# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn.functional as F from torch.utils.data import DataLoader import pytorch_lightning as pl import tests_pytorch.helpers.pipelines as tpipes from pytorch_lightning.callbacks import EarlyStopping from pytorch_lightning.demos.boring_classes import BoringModel, RandomDataset from tests_pytorch.helpers.datamodules import ClassifDataModule from tests_pytorch.helpers.runif import RunIf from tests_pytorch.helpers.simple_models import ClassificationModel class CustomClassificationModelDP(ClassificationModel): def _step(self, batch, batch_idx): x, y = batch logits = self(x) return {"logits": logits, "y": y} def training_step(self, batch, batch_idx): out = self._step(batch, batch_idx) loss = F.cross_entropy(out["logits"], out["y"]) return loss def validation_step(self, batch, batch_idx): return self._step(batch, batch_idx) def test_step(self, batch, batch_idx): return self._step(batch, batch_idx) def validation_step_end(self, outputs): self.log("val_acc", self.valid_acc(outputs["logits"], outputs["y"])) def test_step_end(self, outputs): self.log("test_acc", self.test_acc(outputs["logits"], outputs["y"])) @RunIf(min_cuda_gpus=2, sklearn=True) def test_multi_gpu_early_stop_dp(tmpdir): """Make sure DDP works. with early stopping """ dm = ClassifDataModule() model = CustomClassificationModelDP() trainer_options = dict( default_root_dir=tmpdir, callbacks=[EarlyStopping(monitor="val_acc")], max_epochs=50, limit_train_batches=10, limit_val_batches=10, accelerator="gpu", devices=[0, 1], strategy="dp", ) tpipes.run_model_test(trainer_options, model, dm) @RunIf(min_cuda_gpus=2) def test_multi_gpu_model_dp(tmpdir): trainer_options = dict( default_root_dir=tmpdir, max_epochs=1, limit_train_batches=10, limit_val_batches=10, accelerator="gpu", devices=[0, 1], strategy="dp", enable_progress_bar=False, ) model = BoringModel() tpipes.run_model_test(trainer_options, model) class ReductionTestModel(BoringModel): def train_dataloader(self): return DataLoader(RandomDataset(32, 64), batch_size=2) def val_dataloader(self): return DataLoader(RandomDataset(32, 64), batch_size=2) def test_dataloader(self): return DataLoader(RandomDataset(32, 64), batch_size=2) def add_outputs(self, output, device): output.update( { "reduce_int": torch.tensor(device.index, dtype=torch.int, device=device), "reduce_float": torch.tensor(device.index, dtype=torch.float, device=device), } ) def training_step(self, batch, batch_idx): output = super().training_step(batch, batch_idx) self.add_outputs(output, batch.device) return output def validation_step(self, batch, batch_idx): output = super().validation_step(batch, batch_idx) self.add_outputs(output, batch.device) return output def test_step(self, batch, batch_idx): output = super().test_step(batch, batch_idx) self.add_outputs(output, batch.device) return output def training_epoch_end(self, outputs): assert outputs[0]["loss"].shape == torch.Size([]) self._assert_extra_outputs(outputs) def validation_epoch_end(self, outputs): assert outputs[0]["x"].shape == torch.Size([2]) self._assert_extra_outputs(outputs) def test_epoch_end(self, outputs): assert outputs[0]["y"].shape == torch.Size([2]) self._assert_extra_outputs(outputs) def _assert_extra_outputs(self, outputs): out = outputs[0]["reduce_int"] assert torch.eq(out, torch.tensor([0, 1], device="cuda:0")).all() assert out.dtype is torch.int out = outputs[0]["reduce_float"] assert torch.eq(out, torch.tensor([0.0, 1.0], device="cuda:0")).all() assert out.dtype is torch.float @RunIf(min_cuda_gpus=2) def test_dp_training_step_dict(tmpdir): """This test verifies that dp properly reduces dictionaries.""" model = ReductionTestModel() model.training_step_end = None model.validation_step_end = None model.test_step_end = None trainer = pl.Trainer( default_root_dir=tmpdir, fast_dev_run=True, accelerator="gpu", devices=2, strategy="dp", ) trainer.fit(model) trainer.test(model) @RunIf(min_cuda_gpus=2) def test_dp_batch_not_moved_to_device_explicitly(tmpdir): """Test that with DP, batch is not moved to the device explicitly.""" class CustomModel(BoringModel): def on_train_batch_start(self, batch, *args, **kargs): assert not batch.is_cuda def training_step(self, batch, batch_idx): assert batch.is_cuda return super().training_step(batch, batch_idx) trainer = pl.Trainer( default_root_dir=tmpdir, fast_dev_run=True, accelerator="gpu", devices=2, strategy="dp", ) trainer.fit(CustomModel())