.. role:: hidden :class: hidden-section .. _lightning_module: LightningModule =============== A :class:`~LightningModule` organizes your PyTorch code into 5 sections - Computations (init). - Train loop (training_step) - Validation loop (validation_step) - Test loop (test_step) - Optimizers (configure_optimizers) | .. raw:: html | Notice a few things. 1. It's the SAME code. 2. The PyTorch code IS NOT abstracted - just organized. 3. All the other code that's not in the :class:`~LightningModule` has been automated for you by the trainer. | .. code-block:: python net = Net() trainer = Trainer() trainer.fit(net) 4. There are no .cuda() or .to() calls... Lightning does these for you. | .. code-block:: python # don't do in lightning x = torch.Tensor(2, 3) x = x.cuda() x = x.to(device) # do this instead x = x # leave it alone! # or to init a new tensor new_x = torch.Tensor(2, 3) new_x = new_x.type_as(x) 5. There are no samplers for distributed, Lightning also does this for you. | .. code-block:: python # Don't do in Lightning... data = MNIST(...) sampler = DistributedSampler(data) DataLoader(data, sampler=sampler) # do this instead data = MNIST(...) DataLoader(data) 6. A :class:`~LightningModule` is a :class:`torch.nn.Module` but with added functionality. Use it as such! | .. code-block:: python net = Net.load_from_checkpoint(PATH) net.freeze() out = net(x) Thus, to use Lightning, you just need to organize your code which takes about 30 minutes, (and let's be real, you probably should do anyhow). ------------ Minimal Example --------------- Here are the only required methods. .. code-block:: python >>> import pytorch_lightning as pl >>> class LitModel(pl.LightningModule): ... ... def __init__(self): ... super().__init__() ... self.l1 = torch.nn.Linear(28 * 28, 10) ... ... def forward(self, x): ... return torch.relu(self.l1(x.view(x.size(0), -1))) ... ... def training_step(self, batch, batch_idx): ... x, y = batch ... y_hat = self(x) ... loss = F.cross_entropy(y_hat, y) ... return loss ... ... def configure_optimizers(self): ... return torch.optim.Adam(self.parameters(), lr=0.02) Which you can train by doing: .. code-block:: python train_loader = DataLoader(MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())) trainer = pl.Trainer() model = LitModel() trainer.fit(model, train_loader) ---------- LightningModule for research ---------------------------- For research, LightningModules are best structured as systems. A model (colloquially) refers to something like a resnet or RNN. A system, may be a collection of models. Here are examples of systems: - GAN (generator, discriminator) - RL (policy, actor, critic) - Autoencoders (encoder, decoder) - Seq2Seq (encoder, attention, decoder) - etc... A LightningModule is best used to define a complex system: .. code-block:: python import pytorch_lightning as pl import torch from torch import nn class Autoencoder(pl.LightningModule): def __init__(self, latent_dim=2): super().__init__() self.encoder = nn.Sequential(nn.Linear(28 * 28, 256), nn.ReLU(), nn.Linear(256, latent_dim)) self.decoder = nn.Sequential(nn.Linear(latent_dim, 256), nn.ReLU(), nn.Linear(256, 28 * 28)) def training_step(self, batch, batch_idx): x, _ = batch # encode x = x.view(x.size(0), -1) z = self.encoder(x) # decode recons = self.decoder(z) # reconstruction reconstruction_loss = nn.functional.mse_loss(recons, x) return reconstruction_loss def validation_step(self, batch, batch_idx): x, _ = batch x = x.view(x.size(0), -1) z = self.encoder(x) recons = self.decoder(z) reconstruction_loss = nn.functional.mse_loss(recons, x) self.log('val_reconstruction', reconstruction_loss) def configure_optimizers(self): return torch.optim.Adam(self.parameters(), lr=0.0002) Which can be trained like this: .. code-block:: python autoencoder = Autoencoder() trainer = pl.Trainer(gpus=1) trainer.fit(autoencoder, train_dataloader, val_dataloader) This simple model generates examples that look like this (the encoders and decoders are too weak) .. figure:: https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/ae_docs.png :width: 300 The methods above are part of the lightning interface: - training_step - validation_step - test_step - configure_optimizers Note that in this case, the train loop and val loop are exactly the same. We can of course reuse this code. .. code-block:: python class Autoencoder(pl.LightningModule): def __init__(self, latent_dim=2): super().__init__() self.encoder = nn.Sequential(nn.Linear(28 * 28, 256), nn.ReLU(), nn.Linear(256, latent_dim)) self.decoder = nn.Sequential(nn.Linear(latent_dim, 256), nn.ReLU(), nn.Linear(256, 28 * 28)) def training_step(self, batch, batch_idx): loss = self.shared_step(batch) return loss def validation_step(self, batch, batch_idx): loss = self.shared_step(batch) self.log('val_loss', loss) def shared_step(self, batch): x, _ = batch # encode x = x.view(x.size(0), -1) z = self.encoder(x) # decode recons = self.decoder(z) # loss return nn.functional.mse_loss(recons, x) def configure_optimizers(self): return torch.optim.Adam(self.parameters(), lr=0.0002) We create a new method called `shared_step` that all loops can use. This method name is arbitrary and NOT reserved. Inference in Research ^^^^^^^^^^^^^^^^^^^^^ In the case where we want to perform inference with the system we can add a `forward` method to the LightningModule. .. code-block:: python class Autoencoder(pl.LightningModule): def forward(self, x): return self.decoder(x) The advantage of adding a forward is that in complex systems, you can do a much more involved inference procedure, such as text generation: .. code-block:: python class Seq2Seq(pl.LightningModule): def forward(self, x): embeddings = self(x) hidden_states = self.encoder(embeddings) for h in hidden_states: # decode ... return decoded --------------------- LightningModule for production ------------------------------ For cases like production, you might want to iterate different models inside a LightningModule. .. code-block:: python import pytorch_lightning as pl from pytorch_lightning.metrics import functional as FM class ClassificationTask(pl.LightningModule): def __init__(self, model): super().__init__() self.model = model def training_step(self, batch, batch_idx): x, y = batch y_hat = self.model(x) loss = F.cross_entropy(y_hat, y) return loss def validation_step(self, batch, batch_idx): x, y = batch y_hat = self.model(x) loss = F.cross_entropy(y_hat, y) acc = FM.accuracy(y_hat, y) # loss is tensor. The Checkpoint Callback is monitoring 'checkpoint_on' metrics = {'val_acc': acc, 'val_loss': loss} self.log_dict(metrics) return metrics def test_step(self, batch, batch_idx): metrics = self.validation_step(batch, batch_idx) metrics = {'test_acc': metrics['val_acc'], 'test_loss': metrics['val_loss']} self.log_dict(metrics) def configure_optimizers(self): return torch.optim.Adam(self.model.parameters(), lr=0.02) Then pass in any arbitrary model to be fit with this task .. code-block:: python for model in [resnet50(), vgg16(), BidirectionalRNN()]: task = ClassificationTask(model) trainer = Trainer(gpus=2) trainer.fit(task, train_dataloader, val_dataloader) Tasks can be arbitrarily complex such as implementing GAN training, self-supervised or even RL. .. code-block:: python class GANTask(pl.LightningModule): def __init__(self, generator, discriminator): super().__init__() self.generator = generator self.discriminator = discriminator ... Inference in production ^^^^^^^^^^^^^^^^^^^^^^^ When used like this, the model can be separated from the Task and thus used in production without needing to keep it in a `LightningModule`. - You can export to onnx. - Or trace using Jit. - or run in the python runtime. .. code-block:: python task = ClassificationTask(model) trainer = Trainer(gpus=2) trainer.fit(task, train_dataloader, val_dataloader) # use model after training or load weights and drop into the production system model.eval() y_hat = model(x) Training loop ------------- To add a training loop use the `training_step` method .. code-block:: python class LitClassifier(pl.LightningModule): def __init__(self, model): super().__init__() self.model = model def training_step(self, batch, batch_idx): x, y = batch y_hat = self.model(x) loss = F.cross_entropy(y_hat, y) return loss Under the hood, Lightning does the following (pseudocode): .. code-block:: python # put model in train mode model.train() torch.set_grad_enabled(True) outs = [] for batch in train_dataloader: # forward out = training_step(val_batch) # backward loss.backward() # apply and clear grads optimizer.step() optimizer.zero_grad() Training epoch-level metrics ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ If you want to calculate epoch-level metrics and log them, use the `.log` method .. code-block:: python def training_step(self, batch, batch_idx): x, y = batch y_hat = self.model(x) loss = F.cross_entropy(y_hat, y) # logs metrics for each training_step, and the average across the epoch, to the progress bar and logger result.log('train_loss', loss, on_step=True, on_epoch=True, prog_bar=True, logger=True) return loss The `.log` object automatically reduces the requested metrics across the full epoch. Here's the pseudocode of what it does under the hood: .. code-block:: python outs = [] for batch in train_dataloader: # forward out = training_step(val_batch) # backward loss.backward() # apply and clear grads optimizer.step() optimizer.zero_grad() epoch_metric = torch.mean(torch.stack([x['train_loss'] for x in outs])) Train epoch-level operations ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ If you need to do something with all the outputs of each `training_step`, override `training_epoch_end` yourself. .. code-block:: python def training_step(self, batch, batch_idx): x, y = batch y_hat = self.model(x) loss = F.cross_entropy(y_hat, y) preds = ... return {'loss': loss, 'other_stuff': preds} def training_epoch_end(self, training_step_outputs): for pred in training_step_outputs: # do something The matching pseudocode is: .. code-block:: python outs = [] for batch in train_dataloader: # forward out = training_step(val_batch) # backward loss.backward() # apply and clear grads optimizer.step() optimizer.zero_grad() epoch_out = training_epoch_end(outs) Training with DataParallel ^^^^^^^^^^^^^^^^^^^^^^^^^^ When training using a `distributed_backend` that splits data from each batch across GPUs, sometimes you might need to aggregate them on the master GPU for processing (dp, or ddp2). In this case, implement the `training_step_end` method .. code-block:: python def training_step(self, batch, batch_idx): x, y = batch y_hat = self.model(x) loss = F.cross_entropy(y_hat, y) pred = ... return {'loss': loss, 'pred': pred} def training_step_end(self, batch_parts): gpu_0_prediction = batch_parts.pred[0]['pred'] gpu_1_prediction = batch_parts.pred[1]['pred'] # do something with both outputs return (batch_parts[0]['loss'] + batch_parts[1]['loss']) / 2 def training_epoch_end(self, training_step_outputs): for out in training_step_outputs: # do something with preds The full pseudocode that lighting does under the hood is: .. code-block:: python outs = [] for train_batch in train_dataloader: batches = split_batch(train_batch) dp_outs = [] for sub_batch in batches: # 1 dp_out = training_step(sub_batch) dp_outs.append(dp_out) # 2 out = training_step_end(dp_outs) outs.append(out) # do something with the outputs for all batches # 3 training_epoch_end(outs) ------------------ Validation loop --------------- To add a validation loop, override the `validation_step` method of the :class:`~LightningModule`: .. code-block:: python class LitModel(pl.LightningModule): def validation_step(self, batch, batch_idx): x, y = batch y_hat = self.model(x) loss = F.cross_entropy(y_hat, y) self.log('val_loss', loss) Under the hood, Lightning does the following: .. code-block:: python # ... for batch in train_dataloader: loss = model.training_step() loss.backward() # ... if validate_at_some_point: # disable grads + batchnorm + dropout torch.set_grad_enabled(False) model.eval() # ----------------- VAL LOOP --------------- for val_batch in model.val_dataloader: val_out = model.validation_step(val_batch) # ----------------- VAL LOOP --------------- # enable grads + batchnorm + dropout torch.set_grad_enabled(True) model.train() Validation epoch-level metrics ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ If you need to do something with all the outputs of each `validation_step`, override `validation_epoch_end`. .. code-block:: python def validation_step(self, batch, batch_idx): x, y = batch y_hat = self.model(x) loss = F.cross_entropy(y_hat, y) pred = ... return pred def validation_epoch_end(self, validation_step_outputs): for pred in validation_step_outputs: # do something with a pred Validating with DataParallel ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ When training using a `distributed_backend` that splits data from each batch across GPUs, sometimes you might need to aggregate them on the master GPU for processing (dp, or ddp2). In this case, implement the `validation_step_end` method .. code-block:: python def validation_step(self, batch, batch_idx): x, y = batch y_hat = self.model(x) loss = F.cross_entropy(y_hat, y) pred = ... return {'loss': loss, 'pred': pred} def validation_step_end(self, batch_parts): gpu_0_prediction = batch_parts.pred[0]['pred'] gpu_1_prediction = batch_parts.pred[1]['pred'] # do something with both outputs return (batch_parts[0]['loss'] + batch_parts[1]['loss']) / 2 def validation_epoch_end(self, validation_step_outputs): for out in validation_step_outputs: # do something with preds The full pseudocode that lighting does under the hood is: .. code-block:: python outs = [] for batch in dataloader: batches = split_batch(batch) dp_outs = [] for sub_batch in batches: # 1 dp_out = validation_step(sub_batch) dp_outs.append(dp_out) # 2 out = validation_step_end(dp_outs) outs.append(out) # do something with the outputs for all batches # 3 validation_epoch_end(outs) ---------------- Test loop --------- The process for adding a test loop is the same as the process for adding a validation loop. Please refer to the section above for details. The only difference is that the test loop is only called when `.test()` is used: .. code-block:: python model = Model() trainer = Trainer() trainer.fit() # automatically loads the best weights for you trainer.test(model) There are two ways to call `test()`: .. code-block:: python # call after training trainer = Trainer() trainer.fit(model) # automatically auto-loads the best weights trainer.test(test_dataloaders=test_dataloader) # or call with pretrained model model = MyLightningModule.load_from_checkpoint(PATH) trainer = Trainer() trainer.test(model, test_dataloaders=test_dataloader) ---------- Live demo --------- Check out this `COLAB `_ for a live demo. ----------- LightningModule API ------------------- Training loop methods ^^^^^^^^^^^^^^^^^^^^^ training_step ~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.training_step :noindex: training_step_end ~~~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.training_step_end :noindex: training_epoch_end ~~~~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.training_epoch_end :noindex: --------------- Validation loop methods ^^^^^^^^^^^^^^^^^^^^^^^ validation_step ~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.validation_step :noindex: validation_step_end ~~~~~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.validation_step_end :noindex: validation_epoch_end ~~~~~~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.validation_epoch_end :noindex: ---------------- test loop methods ^^^^^^^^^^^^^^^^^ test_step ~~~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.test_step :noindex: test_step_end ~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.test_step_end :noindex: test_epoch_end ~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.test_epoch_end :noindex: -------------- configure_optimizers ^^^^^^^^^^^^^^^^^^^^ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.configure_optimizers :noindex: -------------- Convenience methods ^^^^^^^^^^^^^^^^^^^ Use these methods for convenience print ~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.print :noindex: save_hyperparameters ~~~~~~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.save_hyperparameters :noindex: ------------ Logging methods ^^^^^^^^^^^^^^^ Use these methods to interact with the loggers log ~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.log :noindex: log_dict ~~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.log_dict :noindex: ------------ Inference methods ^^^^^^^^^^^^^^^^^ Use these hooks for inference with a lightning module forward ~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.forward :noindex: freeze ~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.freeze :noindex: to_onnx ~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.to_onnx :noindex: to_torchscript ~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.to_torchscript :noindex: unfreeze ~~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.unfreeze :noindex: ------------ Properties ^^^^^^^^^^ These are properties available in a LightningModule. ----------- current_epoch ~~~~~~~~~~~~~ The current epoch .. code-block:: python def training_step(...): if self.current_epoch == 0: ------------- device ~~~~~~ The device the module is on. Use it to keep your code device agnostic .. code-block:: python def training_step(...): z = torch.rand(2, 3, device=self.device) ------------- global_rank ~~~~~~~~~~~ The global_rank of this LightningModule. Lightning saves logs, weights etc only from global_rank = 0. You normally do not need to use this property Global rank refers to the index of that GPU across ALL GPUs. For example, if using 10 machines, each with 4 GPUs, the 4th GPU on the 10th machine has global_rank = 39 ------------- global_step ~~~~~~~~~~~ The current step (does not reset each epoch) .. code-block:: python def training_step(...): self.logger.experiment.log_image(..., step=self.global_step) ------------- hparams ~~~~~~~ After calling `save_hyperparameters` anything passed to init() is available via hparams. .. code-block:: python def __init__(self, learning_rate): self.save_hyperparameters() def configure_optimizers(self): return Adam(self.parameters(), lr=self.hparams.learning_rate) -------------- logger ~~~~~~ The current logger being used (tensorboard or other supported logger) .. code-block:: python def training_step(...): # the generic logger (same no matter if tensorboard or other supported logger) self.logger # the particular logger tensorboard_logger = self.logger.experiment -------------- local_rank ~~~~~~~~~~~ The local_rank of this LightningModule. Lightning saves logs, weights etc only from global_rank = 0. You normally do not need to use this property Local rank refers to the rank on that machine. For example, if using 10 machines, the GPU at index 0 on each machine has local_rank = 0. ----------- precision ~~~~~~~~~ The type of precision used: .. code-block:: python def training_step(...): if self.precision == 16: ------------ trainer ~~~~~~~ Pointer to the trainer .. code-block:: python def training_step(...): max_steps = self.trainer.max_steps any_flag = self.trainer.any_flag ------------ use_amp ~~~~~~~ True if using Automatic Mixed Precision (AMP) ------------ use_ddp ~~~~~~~ True if using ddp ------------ use_ddp2 ~~~~~~~~ True if using ddp2 ------------ use_dp ~~~~~~ True if using dp ------------ use_tpu ~~~~~~~ True if using TPUs -------------- Hooks ----- Hook lifecycle pseudocode ^^^^^^^^^^^^^^^^^^^^^^^^^ This is the pseudocode to describe how all the hooks are called during a call to `.fit()` .. code-block:: python def fit(...): on_fit_start() if global_rank == 0: # prepare data is called on GLOBAL_ZERO only prepare_data() for gpu/tpu in gpu/tpus: train_on_device(model.copy()) on_fit_end() def train_on_device(model): # setup is called PER DEVICE setup() configure_optimizers() on_pretrain_routine_start() for epoch in epochs: train_loop() teardown() def train_loop(): on_train_epoch_start() train_outs = [] for train_batch in train_dataloader(): on_train_batch_start() # ----- train_step methods ------- out = training_step(batch) train_outs.append(out) loss = out.loss backward() on_after_backward() optimizer_step() on_before_zero_grad() optimizer_zero_grad() on_train_batch_end() if should_check_val: val_loop() # end training epoch logs = training_epoch_end(outs) def val_loop(): model.eval() torch.set_grad_enabled(False) on_validation_epoch_start() val_outs = [] for val_batch in val_dataloader(): on_validation_batch_start() # -------- val step methods ------- out = validation_step(val_batch) val_outs.append(out) on_validation_batch_end() validation_epoch_end(val_outs) on_validation_epoch_end() # set up for train model.train() torch.set_grad_enabled(True) Advanced hooks ^^^^^^^^^^^^^^ Use these hooks to modify advanced functionality configure_apex ~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.configure_apex :noindex: configure_ddp ~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.configure_ddp :noindex: configure_sync_batchnorm ~~~~~~~~~~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.configure_sync_batchnorm :noindex: get_progress_bar_dict ~~~~~~~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.get_progress_bar_dict :noindex: init_ddp_connection ~~~~~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.init_ddp_connection :noindex: tbptt_split_batch ~~~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.tbptt_split_batch :noindex: Checkpoint hooks ^^^^^^^^^^^^^^^^ These hooks allow you to modify checkpoints on_load_checkpoint ~~~~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.on_load_checkpoint :noindex: on_save_checkpoint ~~~~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.on_save_checkpoint :noindex: ------------- Data hooks ^^^^^^^^^^ Use these hooks if you want to couple a LightningModule to a dataset. .. note:: The same collection of hooks is available in a DataModule class to decouple the data from the model. train_dataloader ~~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.train_dataloader :noindex: val_dataloader ~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.val_dataloader :noindex: test_dataloader ~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.test_dataloader :noindex: prepare_data ~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.prepare_data :noindex: ------------ Optimization hooks ^^^^^^^^^^^^^^^^^^ These are hooks related to the optimization procedure. backward ~~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.backward :noindex: on_after_backward ~~~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.on_after_backward :noindex: on_before_zero_grad ~~~~~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.on_before_zero_grad :noindex: optimizer_step ~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.optimizer_step :noindex: optimizer_zero_grad ~~~~~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.lightning.LightningModule.optimizer_zero_grad :noindex: Training lifecycle hooks ^^^^^^^^^^^^^^^^^^^^^^^^^ These hooks are called during training on_fit_start ~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.hooks.ModelHooks.on_fit_start :noindex: on_fit_end ~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.hooks.ModelHooks.on_fit_end :noindex: on_pretrain_routine_start ~~~~~~~~~~~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.hooks.ModelHooks.on_pretrain_routine_start :noindex: on_pretrain_routine_end ~~~~~~~~~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.hooks.ModelHooks.on_pretrain_routine_end :noindex: on_test_batch_start ~~~~~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.hooks.ModelHooks.on_test_batch_start :noindex: on_test_batch_end ~~~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.hooks.ModelHooks.on_test_batch_end :noindex: on_test_epoch_start ~~~~~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.hooks.ModelHooks.on_test_epoch_start :noindex: on_test_epoch_end ~~~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.hooks.ModelHooks.on_test_epoch_end :noindex: on_train_batch_start ~~~~~~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.hooks.ModelHooks.on_train_batch_start :noindex: on_train_batch_end ~~~~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.hooks.ModelHooks.on_train_batch_end :noindex: on_train_epoch_start ~~~~~~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.hooks.ModelHooks.on_train_epoch_start :noindex: on_train_epoch_end ~~~~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.hooks.ModelHooks.on_train_epoch_end :noindex: on_validation_batch_start ~~~~~~~~~~~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.hooks.ModelHooks.on_validation_batch_start :noindex: on_validation_batch_end ~~~~~~~~~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.hooks.ModelHooks.on_validation_batch_end :noindex: on_validation_epoch_start ~~~~~~~~~~~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.hooks.ModelHooks.on_validation_epoch_start :noindex: on_validation_epoch_end ~~~~~~~~~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.hooks.ModelHooks.on_validation_epoch_end :noindex: setup ~~~~~ .. autofunction:: pytorch_lightning.core.hooks.ModelHooks.setup :noindex: teardown ~~~~~~~~ .. autofunction:: pytorch_lightning.core.hooks.ModelHooks.teardown :noindex: transfer_batch_to_device ~~~~~~~~~~~~~~~~~~~~~~~~ .. autofunction:: pytorch_lightning.core.hooks.DataHooks.transfer_batch_to_device :noindex: