# Copyright The Lightning AI team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from parity_pytorch.measure import measure_loops from tests_pytorch.helpers.advanced_models import ParityModuleMNIST, ParityModuleRNN NUM_EPOCHS = 20 NUM_RUNS = 50 MODEL_CLASSES = (ParityModuleRNN, ParityModuleMNIST) PATH_HERE = os.path.dirname(__file__) FIGURE_EXTENSION = ".png" def _main(): import matplotlib.pylab as plt import pandas as pd fig, axarr = plt.subplots(nrows=len(MODEL_CLASSES)) for i, cls_model in enumerate(MODEL_CLASSES): path_csv = os.path.join(PATH_HERE, f"dump-times_{cls_model.__name__}.csv") if os.path.isfile(path_csv): df_time = pd.read_csv(path_csv, index_col=0) else: # todo: kind="Vanilla PT" -> use_lightning=False vanilla = measure_loops(cls_model, kind="Vanilla PT", num_epochs=NUM_EPOCHS, num_runs=NUM_RUNS) lightning = measure_loops(cls_model, kind="PT Lightning", num_epochs=NUM_EPOCHS, num_runs=NUM_RUNS) df_time = pd.DataFrame({"vanilla PT": vanilla["durations"][1:], "PT Lightning": lightning["durations"][1:]}) df_time /= NUM_RUNS df_time.to_csv(os.path.join(PATH_HERE, f"dump-times_{cls_model.__name__}.csv")) # todo: add also relative X-axis ticks to see both: relative and absolute time differences df_time.plot.hist(ax=axarr[i], bins=20, alpha=0.5, title=cls_model.__name__, legend=True, grid=True) axarr[i].set(xlabel="time [seconds]") path_fig = os.path.join(PATH_HERE, f"figure-parity-times{FIGURE_EXTENSION}") fig.tight_layout() fig.savefig(path_fig) if __name__ == "__main__": _main()