# Copyright The Lightning AI team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License import pytest from lightning.fabric.accelerators.xla import _XLA_AVAILABLE, XLAAccelerator from tests_fabric.helpers.runif import RunIf @RunIf(tpu=True) def test_auto_device_count(): # this depends on the chip used, e.g. with v4-8 we expect 4 # there's no easy way to test it without copying the `auto_device_count` so just check that its greater than 1 assert XLAAccelerator.auto_device_count() > 1 @pytest.mark.skipif(_XLA_AVAILABLE, reason="test requires torch_xla to be absent") def test_tpu_device_absence(): """Check `is_available` returns True when TPU is available.""" assert not XLAAccelerator.is_available() @pytest.mark.parametrize("devices", [1, 8]) def test_get_parallel_devices(devices, tpu_available): expected = XLAAccelerator.get_parallel_devices(devices) assert len(expected) == devices def test_get_parallel_devices_raises(tpu_available): with pytest.raises(ValueError, match="devices` can only be"): XLAAccelerator.get_parallel_devices(0) with pytest.raises(ValueError, match="devices` can only be"): XLAAccelerator.get_parallel_devices(5) with pytest.raises(ValueError, match="Could not parse.*anything-else'"): XLAAccelerator.get_parallel_devices("anything-else")