# Lightning Notebooks ⚡ ## Official Notebooks You can easily run any of the official notebooks by clicking the 'Open in Colab' links in the table below :smile: | Notebook | Description | Colab Link | | :--- | :--- | :---: | | __MNIST Hello World__ | Train your first Lightning Module on the classic MNIST Handwritten Digits Dataset. | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/PytorchLightning/pytorch-lightning/blob/master/notebooks/01_mnist_hello_world.ipynb) | | __Datamodules__ | Learn about DataModules and train a dataset-agnostic model on MNIST and CIFAR10.| [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/PytorchLightning/pytorch-lightning/blob/master/notebooks/02_datamodules.ipynb)| | __GAN__ | Train a GAN on the MNIST Dataset. Learn how to use multiple optimizers in Lightning. | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/PytorchLightning/pytorch-lightning/blob/master/notebooks/03_basic_gan.ipynb) | | __BERT__ | Fine-tune HuggingFace Transformers models on the GLUE Benchmark | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/PytorchLightning/pytorch-lightning/blob/master/notebooks/04_transformers_text_classification.ipynb) |