import os from warnings import warn from argparse import Namespace from pkg_resources import parse_version import torch import csv from torch.utils.tensorboard import SummaryWriter from .base import LightningLoggerBase, rank_zero_only class TensorBoardLogger(LightningLoggerBase): r""" Log to local file system in TensorBoard format Implemented using :class:`torch.utils.tensorboard.SummaryWriter`. Logs are saved to `os.path.join(save_dir, name, version)` .. _tf-logger: Example ------------------ .. code-block:: python logger = TensorBoardLogger("tb_logs", name="my_model") trainer = Trainer(logger=logger) trainer.train(model) Args: save_dir (str): Save directory name (str): Experiment name. Defaults to "default". If it is the empty string then no per-experiment subdirectory is used. version (int|str): Experiment version. If version is not specified the logger inspects the save directory for existing versions, then automatically assigns the next available version. If it is a string then it is used as the run-specific subdirectory name, otherwise version_${version} is used. \**kwargs (dict): Other arguments are passed directly to the :class:`SummaryWriter` constructor. """ NAME_CSV_TAGS = 'meta_tags.csv' def __init__(self, save_dir, name="default", version=None, **kwargs): super().__init__() self.save_dir = save_dir self._name = name self._version = version self._experiment = None self.tags = {} self.kwargs = kwargs @property def root_dir(self): """ Parent directory for all tensorboard checkpoint subdirectories. If the experiment name parameter is None or the empty string, no experiment subdirectory is used and checkpoint will be saved in save_dir/version_dir """ if self.name is None or len(self.name) == 0: return self.save_dir else: return os.path.join(self.save_dir, self.name) @property def log_dir(self): """ The directory for this run's tensorboard checkpoint. By default, it is named 'version_${self.version}' but it can be overridden by passing a string value for the constructor's version parameter instead of None or an int """ # create a pseudo standard path ala test-tube version = self.version if isinstance(self.version, str) else f"version_{self.version}" log_dir = os.path.join(self.root_dir, version) return log_dir @property def experiment(self): r""" Actual tensorboard object. To use tensorboard features do the following. Example:: self.logger.experiment.some_tensorboard_function() """ if self._experiment is not None: return self._experiment os.makedirs(self.root_dir, exist_ok=True) self._experiment = SummaryWriter(log_dir=self.log_dir, **self.kwargs) return self._experiment @rank_zero_only def log_hyperparams(self, params): if params is None: return # in case converting from namespace if isinstance(params, Namespace): params = vars(params) params = dict(params) if parse_version(torch.__version__) < parse_version("1.3.0"): warn( f"Hyperparameter logging is not available for Torch version {torch.__version__}." " Skipping log_hyperparams. Upgrade to Torch 1.3.0 or above to enable" " hyperparameter logging." ) else: from torch.utils.tensorboard.summary import hparams exp, ssi, sei = hparams(params, {}) writer = self.experiment._get_file_writer() writer.add_summary(exp) writer.add_summary(ssi) writer.add_summary(sei) # some alternative should be added self.tags.update(params) @rank_zero_only def log_metrics(self, metrics, step=None): for k, v in metrics.items(): if isinstance(v, torch.Tensor): v = v.item() self.experiment.add_scalar(k, v, step) @rank_zero_only def save(self): try: self.experiment.flush() except AttributeError: # you are using PT version (