# Copyright The Lightning AI team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from functools import partial from unittest import mock from unittest.mock import MagicMock import pytest import torch from torch.utils.data import DataLoader from lightning.fabric.accelerators import TPUAccelerator from lightning.fabric.strategies import XLAStrategy from lightning.fabric.strategies.launchers.xla import _XLALauncher from lightning.fabric.utilities.distributed import ReduceOp from tests_fabric.helpers.models import RandomDataset from tests_fabric.helpers.runif import RunIf def wrap_launch_function(fn, strategy, *args, **kwargs): # the launcher does not manage this automatically. explanation available in: # https://github.com/Lightning-AI/lightning/pull/14926#discussion_r982976718 strategy.setup_environment() return fn(*args, **kwargs) def xla_launch(fn): # TODO: the accelerator should be optional to just launch processes, but this requires lazy initialization accelerator = TPUAccelerator() strategy = XLAStrategy( accelerator=accelerator, parallel_devices=TPUAccelerator.get_parallel_devices(TPUAccelerator.auto_device_count()), ) launcher = _XLALauncher(strategy=strategy) wrapped = partial(wrap_launch_function, fn, strategy) return launcher.launch(wrapped, strategy) def broadcast_on_tpu_fn(strategy): obj = ("ver_0.5", "logger_name", strategy.local_rank) result = strategy.broadcast(obj) assert result == ("ver_0.5", "logger_name", 0) @RunIf(tpu=True) @mock.patch.dict(os.environ, os.environ.copy(), clear=True) def test_broadcast_on_tpu(): """Checks if an object from the main process is broadcasted to other processes correctly.""" xla_launch(broadcast_on_tpu_fn) def tpu_reduce_fn(strategy): with pytest.raises(ValueError, match="XLAStrategy only supports"): strategy.all_reduce(1, reduce_op="undefined") with pytest.raises(ValueError, match="XLAStrategy only supports"): strategy.all_reduce(1, reduce_op=ReduceOp.MAX) # it is faster to loop over here than to parameterize the test for reduce_op in ("mean", "AVG", "sum", ReduceOp.SUM): result = strategy.all_reduce(1, reduce_op=reduce_op) if isinstance(reduce_op, str) and reduce_op.lower() in ("mean", "avg"): assert result.item() == 1 else: assert result.item() == 8 @RunIf(tpu=True) @mock.patch.dict(os.environ, os.environ.copy(), clear=True) def test_tpu_reduce(): """Test tpu spawn all_reduce operation.""" xla_launch(tpu_reduce_fn) @RunIf(tpu=True) @mock.patch("lightning.fabric.strategies.xla.XLAStrategy.root_device") def test_xla_mp_device_dataloader_attribute(_, monkeypatch): dataset = RandomDataset(32, 64) dataloader = DataLoader(dataset) strategy = XLAStrategy() isinstance_return = True import torch_xla.distributed.parallel_loader as parallel_loader class MpDeviceLoaderMock(MagicMock): def __instancecheck__(self, instance): # to make `isinstance(dataloader, MpDeviceLoader)` pass with a mock as class return isinstance_return mp_loader_mock = MpDeviceLoaderMock() monkeypatch.setattr(parallel_loader, "MpDeviceLoader", mp_loader_mock) processed_dataloader = strategy.process_dataloader(dataloader) assert processed_dataloader is dataloader mp_loader_mock.assert_not_called() # no-op isinstance_return = False processed_dataloader = strategy.process_dataloader(dataloader) mp_loader_mock.assert_called_with(dataloader, strategy.root_device) assert processed_dataloader.dataset == processed_dataloader._loader.dataset assert processed_dataloader.batch_sampler == processed_dataloader._loader.batch_sampler def tpu_all_gather_fn(strategy): for sync_grads in [True, False]: tensor = torch.tensor(1.0, device=strategy.root_device, requires_grad=True) result = strategy.all_gather(tensor, sync_grads=sync_grads) summed = result.sum() device_count = strategy.accelerator.auto_device_count() assert torch.equal(summed, torch.tensor(device_count, dtype=torch.float32)) summed.backward() if sync_grads: assert torch.equal(tensor.grad, torch.tensor(1.0)) else: # As gradients are not synced, the original tensor will not have gradients. assert tensor.grad is None @RunIf(tpu=True) @mock.patch.dict(os.environ, os.environ.copy(), clear=True) def test_tpu_all_gather(): """Test the all_gather operation on TPU.""" xla_launch(tpu_all_gather_fn)