# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest import mock import pytest import torch from pytorch_lightning import Trainer from pytorch_lightning.accelerators import GPUAccelerator from tests.helpers import BoringModel from tests.helpers.runif import RunIf @RunIf(min_torch="1.8") @RunIf(min_gpus=1) def test_get_torch_gpu_stats(tmpdir): """Test GPU get_device_stats with Pytorch >= 1.8.0.""" current_device = torch.device(f"cuda:{torch.cuda.current_device()}") gpu_stats = GPUAccelerator().get_device_stats(current_device) fields = ["allocated_bytes.all.freed", "inactive_split.all.peak", "reserved_bytes.large_pool.peak"] for f in fields: assert any(f in h for h in gpu_stats.keys()) @RunIf(max_torch="1.7") @RunIf(min_gpus=1) def test_get_nvidia_gpu_stats(tmpdir): """Test GPU get_device_stats with Pytorch < 1.8.0.""" current_device = torch.device(f"cuda:{torch.cuda.current_device()}") gpu_stats = GPUAccelerator().get_device_stats(current_device) fields = ["utilization.gpu", "memory.used", "memory.free", "utilization.memory"] for f in fields: assert any(f in h for h in gpu_stats.keys()) @RunIf(min_gpus=1) @mock.patch("torch.cuda.set_device") def test_set_cuda_device(set_device_mock, tmpdir): model = BoringModel() trainer = Trainer( default_root_dir=tmpdir, fast_dev_run=True, accelerator="gpu", devices=1, enable_checkpointing=False, enable_model_summary=False, enable_progress_bar=False, ) trainer.fit(model) set_device_mock.assert_called_once() @RunIf(min_gpus=1) def test_gpu_availability(): assert GPUAccelerator.is_available() @RunIf(min_gpus=1) def test_warning_if_gpus_not_used(): with pytest.warns(UserWarning, match="GPU available but not used. Set `accelerator` and `devices`"): Trainer()