# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from contextlib import contextmanager from typing import Dict, Generator, List, Optional, Tuple, Union import torch from torch.nn import Module from torch.optim import Optimizer import pytorch_lightning as pl from pytorch_lightning.core.optimizer import LightningOptimizer from pytorch_lightning.strategies.ddp import DDPStrategy from pytorch_lightning.trainer.states import TrainerFn from pytorch_lightning.utilities.enums import PrecisionType from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.utilities.imports import _FAIRSCALE_AVAILABLE, _FAIRSCALE_OSS_FP16_BROADCAST_AVAILABLE from pytorch_lightning.utilities.rank_zero import rank_zero_only if _FAIRSCALE_AVAILABLE: from fairscale.nn.data_parallel.sharded_ddp import ShardedDataParallel from fairscale.optim import OSS from pytorch_lightning.overrides.fairscale import LightningShardedDataParallel, unwrap_lightning_module_sharded class DDPShardedStrategy(DDPStrategy): """Optimizer and gradient sharded training provided by FairScale.""" strategy_name = "ddp_sharded" _REDUCE_BUFFER_SIZE_DEFAULT: int = 2 ** 23 # 8M def configure_ddp(self) -> None: trainer = self.lightning_module.trainer if "reduce_buffer_size" not in self._ddp_kwargs: # For multi-node training, enabling bucketing will improve performance. self._ddp_kwargs["reduce_buffer_size"] = self._REDUCE_BUFFER_SIZE_DEFAULT if self.num_nodes > 1 else 0 self.model, self.optimizers = self._setup_model_and_optimizers( model=LightningShardedDataParallel(self.model), optimizers=trainer.optimizers, ) def _setup_model_and_optimizers(self, model: Module, optimizers: List[Optimizer]) -> Tuple[Module, List[Optimizer]]: """Wraps the model and optimizers with fairscale components. Return: The model wrapped into a :class:`~fairscale.nn.data_parallel.ShardedDataParallel` module and a list of optimizer wrapped in :class:~`fairscale.optim.OSS`. """ optimizers = self._wrap_optimizers(optimizers) model = ShardedDataParallel(model, sharded_optimizer=optimizers, **self._ddp_kwargs) return model, optimizers def _reinit_optimizers_with_oss(self, optimizers: List[Union[Optimizer, LightningOptimizer]]) -> List["OSS"]: for x, optimizer in enumerate(optimizers): if isinstance(optimizer, LightningOptimizer): optimizer = optimizer._optimizer if not isinstance(optimizer, OSS): optim_class = type(optimizer) zero_optimizer = OSS(params=optimizer.param_groups, optim=optim_class, **optimizer.defaults) if _FAIRSCALE_OSS_FP16_BROADCAST_AVAILABLE: is_fp16 = self.precision_plugin.precision in (PrecisionType.MIXED, PrecisionType.HALF) # For multi-node training, compressing the model shards in fp16 before broadcasting # improves performance. When using PyTorch AMP, it will not degrade # the model performance. zero_optimizer.broadcast_fp16 = is_fp16 and self.num_nodes > 1 optimizers[x] = zero_optimizer del optimizer return optimizers def _wrap_optimizers(self, optimizers: List[Optimizer]) -> List["OSS"]: if self.model is not None and self.model.trainer.state.fn != TrainerFn.FITTING: return optimizers return self._reinit_optimizers_with_oss(optimizers) def optimizer_state(self, optimizer: "OSS") -> Optional[dict]: if isinstance(optimizer, LightningOptimizer): optimizer = optimizer._optimizer optimizer.consolidate_state_dict() return self._optim_state_dict(optimizer) @rank_zero_only def _optim_state_dict(self, optimizer): """ Retrieves state dict only on rank 0, which contains the entire optimizer state after calling :meth:`consolidate_state_dict`. """ return optimizer.state_dict() @property def lightning_module(self) -> Optional["pl.LightningModule"]: if not _FAIRSCALE_AVAILABLE: # pragma: no cover raise MisconfigurationException( "`DDPShardedStrategy` requires `fairscale` to be installed." " Install it by running `pip install fairscale`." ) return unwrap_lightning_module_sharded(self.model) if self.model is not None else None def pre_backward(self, closure_loss: torch.Tensor) -> None: pass @contextmanager def block_backward_sync(self) -> Generator: """Blocks syncing gradients behaviour on backwards pass. This is useful for skipping sync when accumulating gradients, reducing communication overhead Returns: context manager with sync behaviour off """ if isinstance(self.model, ShardedDataParallel): with self.model.no_sync(): yield None else: yield None def post_training_step(self): pass @classmethod def register_strategies(cls, strategy_registry: Dict) -> None: strategy_registry.register( "ddp_sharded_find_unused_parameters_false", cls, description="DDP Sharded Strategy with `find_unused_parameters` as False", find_unused_parameters=False, ) strategy_registry.register( cls.strategy_name, cls, description=f"{cls.__class__.__name__}", )