""" Lightning supports most popular logging frameworks (Tensorboard, comet, weights and biases, etc...). To use a logger, simply pass it into the trainer. To use multiple loggers, simply pass in a ``list`` or ``tuple`` of loggers. .. code-block:: python from pytorch_lightning import loggers # lightning uses tensorboard by default tb_logger = loggers.TensorBoardLogger() trainer = Trainer(logger=tb_logger) # or choose from any of the others such as MLFlow, Comet, Neptune, Wandb comet_logger = loggers.CometLogger() trainer = Trainer(logger=comet_logger) # or pass a list tb_logger = loggers.TensorBoardLogger() comet_logger = loggers.CometLogger() trainer = Trainer(logger=[tb_logger, comet_logger]) .. note:: All loggers log by default to ``os.getcwd()``. To change the path without creating a logger set ``Trainer(default_save_path='/your/path/to/save/checkpoints')`` Custom logger ------------- You can implement your own logger by writing a class that inherits from ``LightningLoggerBase``. Use the ``rank_zero_only`` decorator to make sure that only the first process in DDP training logs data. .. code-block:: python from pytorch_lightning.loggers import LightningLoggerBase, rank_zero_only class MyLogger(LightningLoggerBase): @rank_zero_only def log_hyperparams(self, params): # params is an argparse.Namespace # your code to record hyperparameters goes here pass @rank_zero_only def log_metrics(self, metrics, step): # metrics is a dictionary of metric names and values # your code to record metrics goes here pass def save(self): # Optional. Any code necessary to save logger data goes here pass @rank_zero_only def finalize(self, status): # Optional. Any code that needs to be run after training # finishes goes here If you write a logger that may be useful to others, please send a pull request to add it to Lighting! Using loggers ------------- Call the logger anywhere except ``__init__`` in your LightningModule by doing: .. code-block:: python def train_step(...): # example self.logger.experiment.whatever_method_summary_writer_supports(...) def any_lightning_module_function_or_hook(...): self.logger.experiment.add_histogram(...) Read more in the `Experiment Logging use case <./experiment_logging.html>`_. Supported Loggers ----------------- """ from os import environ from pytorch_lightning.loggers.base import LightningLoggerBase, LoggerCollection, rank_zero_only from pytorch_lightning.loggers.tensorboard import TensorBoardLogger __all__ = ['TensorBoardLogger'] try: # needed to prevent ImportError and duplicated logs. environ["COMET_DISABLE_AUTO_LOGGING"] = "1" from pytorch_lightning.loggers.comet import CometLogger except ImportError: # pragma: no-cover del environ["COMET_DISABLE_AUTO_LOGGING"] # pragma: no-cover else: __all__.append('CometLogger') try: from pytorch_lightning.loggers.mlflow import MLFlowLogger except ImportError: # pragma: no-cover pass # pragma: no-cover else: __all__.append('MLFlowLogger') try: from pytorch_lightning.loggers.neptune import NeptuneLogger except ImportError: # pragma: no-cover pass # pragma: no-cover else: __all__.append('NeptuneLogger') try: from pytorch_lightning.loggers.test_tube import TestTubeLogger except ImportError: # pragma: no-cover pass # pragma: no-cover else: __all__.append('TestTubeLogger') try: from pytorch_lightning.loggers.wandb import WandbLogger except ImportError: # pragma: no-cover pass # pragma: no-cover else: __all__.append('WandbLogger') try: from pytorch_lightning.loggers.trains import TrainsLogger except ImportError: # pragma: no-cover pass # pragma: no-cover else: __all__.append('TrainsLogger')