.. _logging_intermediate: ############################################## Track and Visualize Experiments (intermediate) ############################################## **Audience:** Users who want to track more complex outputs and use third-party experiment managers. ---- ******************************* Track audio and other artifacts ******************************* To track other artifacts, such as histograms or model topology graphs first select one of the many loggers supported by Lightning .. code-block:: python from pytorch_lightning import loggers as pl_loggers tensorboard = pl_loggers.TensorBoardLogger() trainer = Trainer(logger=tensorboard) then access the logger's API directly .. code-block:: python def training_step(self): tensorboard = self.logger.experiment tensorboard.add_image() tensorboard.add_histogram(...) tensorboard.add_figure(...) ---- .. include:: supported_exp_managers.rst ---- **************************************** Track multiple metrics in the same chart **************************************** If your logger supports plotting multiple metrics on the same chart, pass in a dictionary to *self.log*. .. code-block:: python self.log("performance", {"acc": acc, "recall": recall}) ---- ********************* Track hyperparameters ********************* To track hyperparameters, first call *save_hyperparameters* from the LightningModule init: .. code-block:: python class MyLightningModule(LightningModule): def __init__(self, learning_rate, another_parameter, *args, **kwargs): super().__init__() self.save_hyperparameters() If your logger supports tracked hyperparameters, the hyperparameters will automatically show up on the logger dashboard. TODO: show tracked hyperparameters. ---- ******************** Track model topology ******************** Multiple loggers support visualizing the model topology. Here's an example that tracks the model topology using Tensorboard. .. code-block:: python def any_lightning_module_function_or_hook(self): tensorboard_logger = self.logger.experiment prototype_array = torch.Tensor(32, 1, 28, 27) tensorboard_logger.log_graph(model=self, input_array=prototype_array) TODO: show tensorboard topology.