# Docker images ## Builds images form attached Dockerfiles You can build it on your own, note it takes lots of time, be prepared. ```bash git clone docker image build -t pytorch-lightning:latest -f dockers/conda/Dockerfile . ``` or with specific arguments ```bash git clone docker image build \ -t pytorch-lightning:py3.8-pt1.6 \ -f dockers/base-cuda/Dockerfile \ --build-arg PYTHON_VERSION=3.8 \ --build-arg PYTORCH_VERSION=1.6 \ . ``` or nightly version from Coda ```bash git clone docker image build \ -t pytorch-lightning:py3.7-pt1.8 \ -f dockers/base-conda/Dockerfile \ --build-arg PYTHON_VERSION=3.7 \ --build-arg PYTORCH_VERSION=1.8 \ . ``` To run your docker use ```bash docker image list docker run --rm -it pytorch-lightning:latest bash ``` and if you do not need it anymore, just clean it: ```bash docker image list docker image rm pytorch-lightning:latest ``` ### Run docker image with GPUs To run docker image with access to you GPUs you need to install ```bash # Add the package repositories distribution=$(. /etc/os-release;echo $ID$VERSION_ID) curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit sudo systemctl restart docker ``` and later run the docker image with `--gpus all` so for example ``` docker run --rm -it --gpus all pytorchlightning/pytorch_lightning:base-cuda-py3.7-torch1.6 ```