# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper functions to detect NaN/Inf values.""" import logging import torch import torch.nn as nn log = logging.getLogger(__name__) def print_nan_gradients(model: nn.Module) -> None: """Iterates over model parameters and prints out parameter + gradient information if NaN.""" for param in model.parameters(): if (param.grad is not None) and torch.isnan(param.grad.float()).any(): log.info(f"{param}, {param.grad}") def detect_nan_parameters(model: nn.Module) -> None: """Iterates over model parameters and prints gradients if any parameter is not finite. Raises: ValueError: If ``NaN`` or ``inf`` values are found """ for name, param in model.named_parameters(): if not torch.isfinite(param).all(): print_nan_gradients(model) raise ValueError( f"Detected nan and/or inf values in `{name}`." " Check your forward pass for numerically unstable operations." )