# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import optim from torch.optim.optimizer import Optimizer import pytorch_lightning as pl from pytorch_lightning.core.optimizer import LightningOptimizer from pytorch_lightning.utilities import rank_zero_warn from pytorch_lightning.utilities.exceptions import MisconfigurationException class TrainerOptimizersMixin(ABC): _lightning_optimizers: Optional[List[LightningOptimizer]] def init_optimizers(self, model: Optional["pl.LightningModule"]) -> Tuple[List, List, List]: pl_module = self.lightning_module or model self._lightning_optimizers = None optim_conf = self.call_hook("configure_optimizers", pl_module=pl_module) if optim_conf is None: rank_zero_warn( "`LightningModule.configure_optimizers` returned `None`, this fit will run with no optimizer", UserWarning, ) optim_conf = _MockOptimizer() optimizers, lr_schedulers, optimizer_frequencies, monitor = self._configure_optimizers(optim_conf) lr_schedulers = self._configure_schedulers(lr_schedulers, monitor, not pl_module.automatic_optimization) _validate_scheduler_optimizer(optimizers, lr_schedulers) return optimizers, lr_schedulers, optimizer_frequencies @staticmethod def _configure_optimizers( optim_conf: Union[Dict[str, Any], List, Optimizer, Tuple] ) -> Tuple[List, List, List, Optional[str]]: optimizers, lr_schedulers, optimizer_frequencies = [], [], [] monitor = None # single output, single optimizer if isinstance(optim_conf, Optimizer): optimizers = [optim_conf] # two lists, optimizer + lr schedulers elif ( isinstance(optim_conf, (list, tuple)) and len(optim_conf) == 2 and isinstance(optim_conf[0], list) and all(isinstance(opt, Optimizer) for opt in optim_conf[0]) ): opt, sch = optim_conf optimizers = opt lr_schedulers = sch if isinstance(sch, list) else [sch] # single dictionary elif isinstance(optim_conf, dict): _validate_optim_conf(optim_conf) optimizers = [optim_conf["optimizer"]] monitor = optim_conf.get("monitor", None) lr_schedulers = [optim_conf["lr_scheduler"]] if "lr_scheduler" in optim_conf else [] # multiple dictionaries elif isinstance(optim_conf, (list, tuple)) and all(isinstance(d, dict) for d in optim_conf): for opt_dict in optim_conf: _validate_optim_conf(opt_dict) optimizers = [opt_dict["optimizer"] for opt_dict in optim_conf] scheduler_dict = ( lambda scheduler, opt_idx: dict(scheduler, opt_idx=opt_idx) if isinstance(scheduler, dict) else {"scheduler": scheduler, "opt_idx": opt_idx} ) lr_schedulers = [ scheduler_dict(opt_dict["lr_scheduler"], opt_idx) for opt_idx, opt_dict in enumerate(optim_conf) if "lr_scheduler" in opt_dict ] optimizer_frequencies = [ opt_dict["frequency"] for opt_dict in optim_conf if opt_dict.get("frequency", None) is not None ] # assert that if frequencies are present, they are given for all optimizers if optimizer_frequencies and len(optimizer_frequencies) != len(optimizers): raise ValueError("A frequency must be given to each optimizer.") # single list or tuple, multiple optimizer elif isinstance(optim_conf, (list, tuple)) and all(isinstance(opt, Optimizer) for opt in optim_conf): optimizers = list(optim_conf) # unknown configuration else: raise MisconfigurationException( "Unknown configuration for model optimizers." " Output from `model.configure_optimizers()` should either be:\n" " * `torch.optim.Optimizer`\n" " * [`torch.optim.Optimizer`]\n" " * ([`torch.optim.Optimizer`], [`torch.optim.lr_scheduler`])\n" ' * {"optimizer": `torch.optim.Optimizer`, (optional) "lr_scheduler": `torch.optim.lr_scheduler`}\n' ' * A list of the previously described dict format, with an optional "frequency" key (int)' ) return optimizers, lr_schedulers, optimizer_frequencies, monitor def convert_to_lightning_optimizers(self): def _convert_to_lightning_optimizer(trainer, optimizer): if not isinstance(optimizer, LightningOptimizer): optimizer = LightningOptimizer(optimizer) optimizer._on_trainer_init(trainer) return optimizer self._lightning_optimizers = { opt_idx: _convert_to_lightning_optimizer(self, opt) for opt_idx, opt in enumerate(self.optimizers) } @staticmethod def _configure_schedulers( schedulers: list, monitor: Optional[str], is_manual_optimization: bool ) -> List[Dict[str, Any]]: """Convert each scheduler into dict structure with relevant information.""" lr_schedulers = [] default_config = _get_default_scheduler_config() for scheduler in schedulers: if is_manual_optimization: if isinstance(scheduler, dict): invalid_keys = {"interval", "frequency", "reduce_on_plateau", "monitor", "strict"} keys_to_warn = [k for k in scheduler.keys() if k in invalid_keys] if keys_to_warn: rank_zero_warn( f"The lr scheduler dict contains the key(s) {keys_to_warn}, but the keys will be ignored." " You need to call `lr_scheduler.step()` manually in manual optimization.", RuntimeWarning, ) scheduler = {key: scheduler[key] for key in scheduler if key not in invalid_keys} lr_schedulers.append({**default_config, **scheduler}) else: lr_schedulers.append({**default_config, "scheduler": scheduler}) else: if isinstance(scheduler, dict): # check provided keys extra_keys = [k for k in scheduler.keys() if k not in default_config.keys()] if extra_keys: rank_zero_warn(f"Found unsupported keys in the lr scheduler dict: {extra_keys}", RuntimeWarning) if "scheduler" not in scheduler: raise MisconfigurationException( 'The lr scheduler dict must have the key "scheduler" with its item being an lr scheduler' ) if "interval" in scheduler and scheduler["interval"] not in ("step", "epoch"): raise MisconfigurationException( 'The "interval" key in lr scheduler dict must be "step" or "epoch"' f' but is "{scheduler["interval"]}"' ) scheduler["reduce_on_plateau"] = isinstance( scheduler["scheduler"], optim.lr_scheduler.ReduceLROnPlateau ) if scheduler["reduce_on_plateau"] and scheduler.get("monitor", None) is None: raise MisconfigurationException( "The lr scheduler dict must include a monitor when a `ReduceLROnPlateau` scheduler is used." ' For example: {"optimizer": optimizer, "lr_scheduler":' ' {"scheduler": scheduler, "monitor": "your_loss"}}' ) is_one_cycle = isinstance(scheduler["scheduler"], optim.lr_scheduler.OneCycleLR) if is_one_cycle and scheduler.get("interval", "epoch") == "epoch": rank_zero_warn( "A `OneCycleLR` scheduler is using 'interval': 'epoch'." " Are you sure you didn't mean 'interval': 'step'?", RuntimeWarning, ) lr_schedulers.append({**default_config, **scheduler}) elif isinstance(scheduler, optim.lr_scheduler.ReduceLROnPlateau): if monitor is None: raise MisconfigurationException( "`configure_optimizers` must include a monitor when a `ReduceLROnPlateau`" " scheduler is used. For example:" ' {"optimizer": optimizer, "lr_scheduler": scheduler, "monitor": "metric_to_track"}' ) lr_schedulers.append( {**default_config, "scheduler": scheduler, "reduce_on_plateau": True, "monitor": monitor} ) elif isinstance(scheduler, optim.lr_scheduler._LRScheduler): lr_schedulers.append({**default_config, "scheduler": scheduler}) else: raise ValueError(f'The provided lr scheduler "{scheduler}" is invalid') return lr_schedulers class _MockOptimizer(Optimizer): """The `_MockOptimizer` will be used inplace of an optimizer in the event that `None` is returned from `configure_optimizers`.""" def __init__(self): super().__init__([torch.zeros(1)], {}) def add_param_group(self, param_group): pass # Do Nothing def load_state_dict(self, state_dict): pass # Do Nothing def state_dict(self): return {} # Return Empty def step(self, closure=None): if closure is not None: closure() def zero_grad(self): pass # Do Nothing def __repr__(self): return "No Optimizer" def _validate_optim_conf(optim_conf: Dict[str, Any]) -> None: valid_keys = {"optimizer", "lr_scheduler", "frequency", "monitor"} extra_keys = optim_conf.keys() - valid_keys if extra_keys: rank_zero_warn(f"Found unsupported keys in the optimizer configuration: {set(extra_keys)}", RuntimeWarning) def _validate_scheduler_optimizer(optimizers, lr_schedulers): if any(sch["scheduler"].optimizer not in optimizers for sch in lr_schedulers): raise MisconfigurationException( "Some schedulers are attached with an optimizer that wasn't returned from `configure_optimizers`." ) def _get_default_scheduler_config() -> Dict[str, Any]: return { "scheduler": None, "name": None, # no custom name "interval": "epoch", # after epoch is over "frequency": 1, # every epoch/batch "reduce_on_plateau": False, # most often not ReduceLROnPlateau scheduler "monitor": None, # value to monitor for ReduceLROnPlateau "strict": True, # enforce that the monitor exists for ReduceLROnPlateau "opt_idx": None, # necessary to store opt_idx when optimizer frequencies are specified }