""" CSV logger ---------- CSV logger for basic experiment logging that does not require opening ports """ import csv import io import os from argparse import Namespace from typing import Optional, Dict, Any, Union import torch from pytorch_lightning import _logger as log from pytorch_lightning.core.saving import save_hparams_to_yaml from pytorch_lightning.loggers.base import LightningLoggerBase from pytorch_lightning.utilities.distributed import rank_zero_warn, rank_zero_only class ExperimentWriter(object): r""" Experiment writer for CSVLogger. Currently supports to log hyperparameters and metrics in YAML and CSV format, respectively. Args: log_dir: Directory for the experiment logs """ NAME_HPARAMS_FILE = 'hparams.yaml' NAME_METRICS_FILE = 'metrics.csv' def __init__(self, log_dir: str) -> None: self.hparams = {} self.metrics = [] self.log_dir = log_dir if os.path.exists(self.log_dir): rank_zero_warn( f"Experiment logs directory {self.log_dir} exists and is not empty." " Previous log files in this directory will be deleted when the new ones are saved!" ) os.makedirs(self.log_dir, exist_ok=True) self.metrics_file_path = os.path.join(self.log_dir, self.NAME_METRICS_FILE) def log_hparams(self, params: Dict[str, Any]) -> None: """Record hparams""" self.hparams.update(params) def log_metrics(self, metrics_dict: Dict[str, float], step: Optional[int] = None) -> None: """Record metrics""" def _handle_value(value): if isinstance(value, torch.Tensor): return value.item() return value if step is None: step = len(self.metrics) metrics = {k: _handle_value(v) for k, v in metrics_dict.items()} metrics['step'] = step self.metrics.append(metrics) def save(self) -> None: """Save recorded hparams and metrics into files""" hparams_file = os.path.join(self.log_dir, self.NAME_HPARAMS_FILE) save_hparams_to_yaml(hparams_file, self.hparams) if not self.metrics: return last_m = {} for m in self.metrics: last_m.update(m) metrics_keys = list(last_m.keys()) with io.open(self.metrics_file_path, 'w', newline='') as f: self.writer = csv.DictWriter(f, fieldnames=metrics_keys) self.writer.writeheader() self.writer.writerows(self.metrics) class CSVLogger(LightningLoggerBase): r""" Log to local file system in yaml and CSV format. Logs are saved to ``os.path.join(save_dir, name, version)``. Example: >>> from pytorch_lightning import Trainer >>> from pytorch_lightning.loggers import CSVLogger >>> logger = CSVLogger("logs", name="my_exp_name") >>> trainer = Trainer(logger=logger) Args: save_dir: Save directory name: Experiment name. Defaults to ``'default'``. version: Experiment version. If version is not specified the logger inspects the save directory for existing versions, then automatically assigns the next available version. """ def __init__(self, save_dir: str, name: Optional[str] = "default", version: Optional[Union[int, str]] = None): super().__init__() self._save_dir = save_dir self._name = name or '' self._version = version self._experiment = None @property def root_dir(self) -> str: """ Parent directory for all checkpoint subdirectories. If the experiment name parameter is ``None`` or the empty string, no experiment subdirectory is used and the checkpoint will be saved in "save_dir/version_dir" """ if not self.name: return self.save_dir return os.path.join(self.save_dir, self.name) @property def log_dir(self) -> str: """ The log directory for this run. By default, it is named ``'version_${self.version}'`` but it can be overridden by passing a string value for the constructor's version parameter instead of ``None`` or an int. """ # create a pseudo standard path ala test-tube version = self.version if isinstance(self.version, str) else f"version_{self.version}" log_dir = os.path.join(self.root_dir, version) return log_dir @property def save_dir(self) -> Optional[str]: return self._save_dir @property def experiment(self) -> ExperimentWriter: r""" Actual ExperimentWriter object. To use ExperimentWriter features in your :class:`~pytorch_lightning.core.lightning.LightningModule` do the following. Example:: self.logger.experiment.some_experiment_writer_function() """ if self._experiment: return self._experiment os.makedirs(self.root_dir, exist_ok=True) self._experiment = ExperimentWriter(log_dir=self.log_dir) return self._experiment @rank_zero_only def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None: params = self._convert_params(params) self.experiment.log_hparams(params) @rank_zero_only def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None: self.experiment.log_metrics(metrics, step) @rank_zero_only def save(self) -> None: super().save() self.experiment.save() @rank_zero_only def finalize(self, status: str) -> None: self.save() @property def name(self) -> str: return self._name @property def version(self) -> int: if self._version is None: self._version = self._get_next_version() return self._version def _get_next_version(self): root_dir = os.path.join(self._save_dir, self.name) if not os.path.isdir(root_dir): log.warning('Missing logger folder: %s', root_dir) return 0 existing_versions = [] for d in os.listdir(root_dir): if os.path.isdir(os.path.join(root_dir, d)) and d.startswith("version_"): existing_versions.append(int(d.split("_")[1])) if len(existing_versions) == 0: return 0 return max(existing_versions) + 1