import pytest from pytorch_lightning import Trainer from pytorch_lightning.examples.new_project_templates.lightning_module_template import LightningTemplateModel from argparse import Namespace from test_tube import Experiment import numpy as np import warnings import torch import os import shutil import pdb def get_model(): # set up model with these hyperparams root_dir = os.path.dirname(os.path.realpath(__file__)) hparams = Namespace(**{'drop_prob': 0.2, 'batch_size': 32, 'in_features': 28*28, 'learning_rate': 0.001*8, 'optimizer_name': 'adam', 'data_root': os.path.join(root_dir, 'mnist'), 'out_features': 10, 'hidden_dim': 1000}) model = LightningTemplateModel(hparams) return model def get_exp(): # set up exp object without actually saving logs root_dir = os.path.dirname(os.path.realpath(__file__)) exp = Experiment(debug=True, save_dir=root_dir, name='tests_tt_dir') return exp def clear_tt_dir(): root_dir = os.path.dirname(os.path.realpath(__file__)) tt_dir = os.path.join(root_dir, 'tests_tt_dir') if os.path.exists(tt_dir): shutil.rmtree(tt_dir) def main(): clear_tt_dir() model = get_model() trainer = Trainer( progress_bar=True, experiment=get_exp(), max_nb_epochs=1, train_percent_check=0.1, val_percent_check=0.1, gpus=[0, 1], distributed_backend='ddp', use_amp=True ) result = trainer.fit(model) # correct result and ok accuracy assert result == 1, 'amp + ddp model failed to complete' # test prediction data = model.val_dataloader for batch in data: break x, y = batch x = x.view(x.size(0), -1) out = model(x) labels_hat = torch.argmax(out, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) val_acc = torch.tensor(val_acc) print(val_acc) clear_tt_dir() if __name__ == '__main__': main()