import os import torch from torch.utils.data import DataLoader, Dataset from pytorch_lightning import LightningModule, Trainer class RandomDataset(Dataset): def __init__(self, size, length): self.len = length self.data = torch.randn(length, size) def __getitem__(self, index): return self.data[index] def __len__(self): return self.len class BoringModel(LightningModule): def __init__(self): super().__init__() self.layer = torch.nn.Linear(32, 2) def forward(self, x): return self.layer(x) def training_step(self, batch, batch_idx): loss = self(batch).sum() self.log("train_loss", loss) return {"loss": loss} def validation_step(self, batch, batch_idx): loss = self(batch).sum() self.log("valid_loss", loss) def test_step(self, batch, batch_idx): loss = self(batch).sum() self.log("test_loss", loss) def configure_optimizers(self): return torch.optim.SGD(self.layer.parameters(), lr=0.1) def run(): train_data = DataLoader(RandomDataset(32, 64), batch_size=2) val_data = DataLoader(RandomDataset(32, 64), batch_size=2) test_data = DataLoader(RandomDataset(32, 64), batch_size=2) model = BoringModel() trainer = Trainer( default_root_dir=os.getcwd(), limit_train_batches=1, limit_val_batches=1, num_sanity_val_steps=0, max_epochs=1, weights_summary=None, ) trainer.fit(model, train_dataloader=train_data, val_dataloaders=val_data) trainer.test(model, test_dataloaders=test_data) if __name__ == '__main__': run()