# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pickle from argparse import Namespace from copy import deepcopy from typing import Any, Dict, Optional from unittest.mock import MagicMock, patch import numpy as np import pytest import torch from pytorch_lightning import Trainer from pytorch_lightning.loggers import LightningLoggerBase, LoggerCollection, TensorBoardLogger from pytorch_lightning.loggers.base import DummyExperiment, DummyLogger from pytorch_lightning.utilities import rank_zero_only from pytorch_lightning.utilities.exceptions import MisconfigurationException from tests.helpers.boring_model import BoringDataModule, BoringModel def test_logger_collection(): mock1 = MagicMock() mock2 = MagicMock() logger = LoggerCollection([mock1, mock2]) assert logger[0] == mock1 assert logger[1] == mock2 assert logger.experiment[0] == mock1.experiment assert logger.experiment[1] == mock2.experiment assert logger.save_dir is None logger.update_agg_funcs({"test": np.mean}, np.sum) mock1.update_agg_funcs.assert_called_once_with({"test": np.mean}, np.sum) mock2.update_agg_funcs.assert_called_once_with({"test": np.mean}, np.sum) logger.agg_and_log_metrics({"test": 2.0}, 4) mock1.agg_and_log_metrics.assert_called_once_with({"test": 2.0}, 4) mock2.agg_and_log_metrics.assert_called_once_with({"test": 2.0}, 4) logger.finalize("success") mock1.finalize.assert_called_once() mock2.finalize.assert_called_once() class CustomLogger(LightningLoggerBase): def __init__(self): super().__init__() self.hparams_logged = None self.metrics_logged = {} self.finalized = False self.after_save_checkpoint_called = False @property def experiment(self): return "test" @rank_zero_only def log_hyperparams(self, params): self.hparams_logged = params @rank_zero_only def log_metrics(self, metrics, step): self.metrics_logged = metrics @rank_zero_only def finalize(self, status): self.finalized_status = status @property def save_dir(self) -> Optional[str]: """Return the root directory where experiment logs get saved, or `None` if the logger does not save data locally.""" return None @property def name(self): return "name" @property def version(self): return "1" def after_save_checkpoint(self, checkpoint_callback): self.after_save_checkpoint_called = True def test_custom_logger(tmpdir): class CustomModel(BoringModel): def training_step(self, batch, batch_idx): output = self.layer(batch) loss = self.loss(batch, output) self.log("train_loss", loss) return {"loss": loss} logger = CustomLogger() model = CustomModel() trainer = Trainer(max_steps=2, log_every_n_steps=1, logger=logger, default_root_dir=tmpdir) trainer.fit(model) assert trainer.state.finished, f"Training failed with {trainer.state}" assert logger.hparams_logged == model.hparams assert logger.metrics_logged != {} assert logger.after_save_checkpoint_called assert logger.finalized_status == "success" def test_multiple_loggers(tmpdir): class CustomModel(BoringModel): def training_step(self, batch, batch_idx): output = self.layer(batch) loss = self.loss(batch, output) self.log("train_loss", loss) return {"loss": loss} model = CustomModel() logger1 = CustomLogger() logger2 = CustomLogger() trainer = Trainer(max_steps=2, log_every_n_steps=1, logger=[logger1, logger2], default_root_dir=tmpdir) trainer.fit(model) assert trainer.state.finished, f"Training failed with {trainer.state}" assert logger1.hparams_logged == model.hparams assert logger1.metrics_logged != {} assert logger1.finalized_status == "success" assert logger2.hparams_logged == model.hparams assert logger2.metrics_logged != {} assert logger2.finalized_status == "success" def test_multiple_loggers_pickle(tmpdir): """Verify that pickling trainer with multiple loggers works.""" logger1 = CustomLogger() logger2 = CustomLogger() trainer = Trainer(logger=[logger1, logger2]) pkl_bytes = pickle.dumps(trainer) trainer2 = pickle.loads(pkl_bytes) trainer2.logger.log_metrics({"acc": 1.0}, 0) assert trainer2.logger[0].metrics_logged == {"acc": 1.0} assert trainer2.logger[1].metrics_logged == {"acc": 1.0} def test_adding_step_key(tmpdir): class CustomTensorBoardLogger(TensorBoardLogger): def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self.logged_step = 0 def log_metrics(self, metrics, step): if "val_acc" in metrics: assert step == self.logged_step super().log_metrics(metrics, step) class CustomModel(BoringModel): def training_epoch_end(self, outputs): self.logger.logged_step += 1 self.log_dict({"step": self.logger.logged_step, "train_acc": self.logger.logged_step / 10}) def validation_epoch_end(self, outputs): self.logger.logged_step += 1 self.log_dict({"step": self.logger.logged_step, "val_acc": self.logger.logged_step / 10}) model = CustomModel() trainer = Trainer( max_epochs=3, logger=CustomTensorBoardLogger(save_dir=tmpdir), default_root_dir=tmpdir, limit_train_batches=0.1, limit_val_batches=0.1, num_sanity_val_steps=0, ) trainer.fit(model) def test_with_accumulate_grad_batches(): """Checks if the logging is performed once for `accumulate_grad_batches` steps.""" class StoreHistoryLogger(CustomLogger): def __init__(self): super().__init__() self.history = {} @rank_zero_only def log_metrics(self, metrics, step): if step not in self.history: self.history[step] = {} self.history[step].update(metrics) logger = StoreHistoryLogger() np.random.seed(42) for i, loss in enumerate(np.random.random(10)): logger.agg_and_log_metrics({"loss": loss}, step=int(i / 5)) assert logger.history == {0: {"loss": 0.5623850983416314}} logger.save() assert logger.history == {0: {"loss": 0.5623850983416314}, 1: {"loss": 0.4778883735637184}} def test_dummyexperiment_support_indexing(): """Test that the DummyExperiment can imitate indexing the experiment in a LoggerCollection.""" experiment = DummyExperiment() assert experiment[0] == experiment def test_dummylogger_support_indexing(): """Test that the DummyLogger can imitate indexing of a LoggerCollection.""" logger = DummyLogger() assert logger[0] == logger def test_dummylogger_empty_iterable(): """Test that DummyLogger represents an empty iterable.""" logger = DummyLogger() for _ in logger: assert False def test_dummylogger_noop_method_calls(): """Test that the DummyLogger methods can be called with arbitrary arguments.""" logger = DummyLogger() logger.log_hyperparams("1", 2, three="three") logger.log_metrics("1", 2, three="three") def test_np_sanitization(): class CustomParamsLogger(CustomLogger): def __init__(self): super().__init__() self.logged_params = None @rank_zero_only def log_hyperparams(self, params): params = self._convert_params(params) params = self._sanitize_params(params) self.logged_params = params logger = CustomParamsLogger() np_params = { "np.bool_": np.bool_(1), "np.byte": np.byte(2), "np.intc": np.intc(3), "np.int_": np.int_(4), "np.longlong": np.longlong(5), "np.single": np.single(6.0), "np.double": np.double(8.9), "np.csingle": np.csingle(7 + 2j), "np.cdouble": np.cdouble(9 + 4j), } sanitized_params = { "np.bool_": True, "np.byte": 2, "np.intc": 3, "np.int_": 4, "np.longlong": 5, "np.single": 6.0, "np.double": 8.9, "np.csingle": "(7+2j)", "np.cdouble": "(9+4j)", } logger.log_hyperparams(Namespace(**np_params)) assert logger.logged_params == sanitized_params @pytest.mark.parametrize("logger", [True, False]) @patch("pytorch_lightning.loggers.tensorboard.TensorBoardLogger.log_hyperparams") def test_log_hyperparams_being_called(log_hyperparams_mock, tmpdir, logger): class TestModel(BoringModel): def __init__(self, param_one, param_two): super().__init__() self.save_hyperparameters(logger=logger) model = TestModel("pytorch", "lightning") trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, limit_train_batches=0.1, limit_val_batches=0.1, num_sanity_val_steps=0 ) trainer.fit(model) if logger: log_hyperparams_mock.assert_called() else: log_hyperparams_mock.assert_not_called() @patch("pytorch_lightning.loggers.tensorboard.TensorBoardLogger.log_hyperparams") def test_log_hyperparams_key_collision(log_hyperparams_mock, tmpdir): class TestModel(BoringModel): def __init__(self, hparams: Dict[str, Any]) -> None: super().__init__() self.save_hyperparameters(hparams) class TestDataModule(BoringDataModule): def __init__(self, hparams: Dict[str, Any]) -> None: super().__init__() self.save_hyperparameters(hparams) class _Test: ... same_params = {1: 1, "2": 2, "three": 3.0, "test": _Test(), "4": torch.tensor(4)} model = TestModel(same_params) dm = TestDataModule(same_params) trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, limit_train_batches=0.1, limit_val_batches=0.1, num_sanity_val_steps=0, enable_checkpointing=False, enable_progress_bar=False, enable_model_summary=False, ) # there should be no exceptions raised for the same key/value pair in the hparams of both # the lightning module and data module trainer.fit(model) obj_params = deepcopy(same_params) obj_params["test"] = _Test() model = TestModel(same_params) dm = TestDataModule(obj_params) trainer.fit(model) diff_params = deepcopy(same_params) diff_params.update({1: 0, "test": _Test()}) model = TestModel(same_params) dm = TestDataModule(diff_params) trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, limit_train_batches=0.1, limit_val_batches=0.1, num_sanity_val_steps=0, enable_checkpointing=False, enable_progress_bar=False, enable_model_summary=False, ) with pytest.raises(MisconfigurationException, match="Error while merging hparams"): trainer.fit(model, dm) tensor_params = deepcopy(same_params) tensor_params.update({"4": torch.tensor(3)}) model = TestModel(same_params) dm = TestDataModule(tensor_params) trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, limit_train_batches=0.1, limit_val_batches=0.1, num_sanity_val_steps=0, enable_checkpointing=False, enable_progress_bar=False, enable_model_summary=False, ) with pytest.raises(MisconfigurationException, match="Error while merging hparams"): trainer.fit(model, dm)