# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from typing import Any, Callable, Optional, Union METRIC_EPS = 1e-6 def dim_zero_cat(x): return torch.cat(x, dim=0) def dim_zero_sum(x): return torch.sum(x, dim=0) def dim_zero_mean(x): return torch.mean(x, dim=0) def _flatten(x): return [item for sublist in x for item in sublist] def to_onehot( tensor: torch.Tensor, num_classes: int, ) -> torch.Tensor: """ Converts a dense label tensor to one-hot format Args: tensor: dense label tensor, with shape [N, d1, d2, ...] num_classes: number of classes C Output: A sparse label tensor with shape [N, C, d1, d2, ...] Example: >>> x = torch.tensor([1, 2, 3]) >>> to_onehot(x, num_classes=4) tensor([[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) """ dtype, device, shape = tensor.dtype, tensor.device, tensor.shape tensor_onehot = torch.zeros(shape[0], num_classes, *shape[1:], dtype=dtype, device=device) index = tensor.long().unsqueeze(1).expand_as(tensor_onehot) return tensor_onehot.scatter_(1, index, 1.0)