# Pytorch-lightning The Keras for ML-researchers in PyTorch. ## Usage To use lightning do 2 things: 1. [Define a trainer](https://github.com/williamFalcon/pytorch-lightning/blob/master/pytorch_lightning/trainer_main.py) (which will run ALL your models). 2. [Define a model](https://github.com/williamFalcon/pytorch-lightning/blob/master/pytorch_lightning/models/sample_model_template/model_template.py). ### Example: #### Define the trainer ```python # trainer.py from pytorch_lightning.models.trainer import Trainer from pytorch_lightning.utils.pt_callbacks import EarlyStopping, ModelCheckpoint from my_project import My_Model from test_tube import HyperOptArgumentParser, Experiment, SlurmCluster # -------------- # TEST TUBE INIT exp = Experiment( name='my_exp', debug=True, save_dir='/some/path', autosave=False, description='my desc' ) # -------------------- # CALLBACKS early_stop = EarlyStopping( monitor='val_loss', patience=3, verbose=True, mode='min' ) model_save_path = 'PATH/TO/SAVE' checkpoint = ModelCheckpoint( filepath=model_save_path, save_function=None, save_best_only=True, verbose=True, monitor='val_acc', mode='min' ) # configure trainer trainer = Trainer( experiment=experiment, cluster=cluster, checkpoint_callback=checkpoint, early_stop_callback=early_stop ) # init model and train model = My_Model() trainer.fit(model) ``` #### Define the model ```python from torch import nn class My_Model(RootModule): def __init__(self): # define model self.l1 = nn.Linear(200, 10) # --------------- # TRAINING def training_step(self, data_batch): x, y = data_batch y_hat = self.l1(x) loss = some_loss(y_hat) return loss_val, {'train_loss': loss} def validation_step(self, data_batch): x, y = data_batch y_hat = self.l1(x) loss = some_loss(y_hat) return loss_val, {'val_loss': loss} def validation_end(self, outputs): total_accs = [] for output in outputs: total_accs.append(output['val_acc'].item()) # return a dict return {'total_acc': np.mean(total_accs)} # --------------- # SAVING def get_save_dict(self): # lightning saves for you. Here's your chance to say what you want to save checkpoint = {'state_dict': self.state_dict()} return checkpoint def load_model_specific(self, checkpoint): # lightning loads for you. Here's your chance to say what you want to load self.load_state_dict(checkpoint['state_dict']) # --------------- # TRAINING CONFIG def configure_optimizers(self): # give lightning the list of optimizers you want to use. # lightning will call automatically optimizer = self.choose_optimizer('adam', self.parameters(), {'lr': self.hparams.learning_rate}, 'optimizer') return [optimizer] @property def tng_dataloader(self): return pytorch_dataloader('train') @property def val_dataloader(self): return pytorch_dataloader('val') @property def test_dataloader(self): return pytorch_dataloader('test') # --------------- # MODIFY YOUR COMMAND LINE ARGS @staticmethod def add_model_specific_args(parent_parser): parser = HyperOptArgumentParser(strategy=parent_parser.strategy, parents=[parent_parser]) parser.add_argument('--out_features', default=20) return parser ``` ### Details #### Model definition | Name | Description | Input | Return | |---|---|---|---| | training_step | Called with a batch of data during training | data from your dataloaders | tuple: scalar, dict | | validation_step | Called with a batch of data during validation | data from your dataloaders | tuple: scalar, dict | | validation_end | Collate metrics from all validation steps | outputs: array where each item is the output of a validation step | dict: for logging | | get_save_dict | called when your model needs to be saved (checkpoints, hpc save, etc...) | None | dict to be saved | #### Model training | Name | Description | Input | Return | |---|---|---|---| | configure_optimizers | called during training setup | None | list: optimizers you want to use | | tng_dataloader | called during training | None | pytorch dataloader | | val_dataloader | called during validation | None | pytorch dataloader | | test_dataloader | called during testing | None | pytorch dataloader | | add_model_specific_args | called with args you defined in your main. This lets you tailor args for each model and keep main the same | argparse | argparse | #### Model Saving/Loading | Name | Description | Input | Return | |---|---|---|---| | get_save_dict | called when your model needs to be saved (checkpoints, hpc save, etc...) | None | dict to be saved | | load_model_specific | called when loading a model | checkpoint: dict you created in get_save_dict | dict: modified in whatever way you want | ## Optional model hooks. Add these to the model whenever you want to configure training behavior. ### Model lifecycle hooks Use these hooks to customize functionality | Method | Purpose | Input | Output | Required | |---|---|---|---|---| | on_batch_start() | called right before the batch starts | - | - | N | | on_batch_end() | called right after the batch ends | - | - | N | | on_epoch_start() | called right before the epoch starts | - | - | N | | on_epoch_end() | called right afger the epoch ends | - | - | N | | on_pre_performance_check() | called right before the performance check starts | - | - | N | | on_post_performance_check() | called right after the batch starts | - | - | N |