# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from re import escape import pytest from torch.utils.data import DataLoader, DistributedSampler from torch.utils.data.sampler import BatchSampler, Sampler, SequentialSampler from pytorch_lightning import Trainer from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.utilities.imports import _TORCH_GREATER_EQUAL_1_7 from tests.helpers import BoringModel, RandomDataset @pytest.mark.skipif( sys.platform == "win32" and not _TORCH_GREATER_EQUAL_1_7, reason="Bad `torch.distributed` support on Windows" ) @pytest.mark.parametrize("mode", (1, 2, 3)) def test_replace_distributed_sampler(tmpdir, mode): class IndexedRandomDataset(RandomDataset): def __getitem__(self, index): return self.data[index] class CustomDataLoader(DataLoader): def __init__(self, num_features, dataset, *args, **kwargs): self.num_features = num_features super().__init__(dataset, *args, **kwargs) class FailureCustomDataLoader(DataLoader): def __init__(self, num_features, dataset, *args, **kwargs): super().__init__(dataset, *args, **kwargs) class CustomBatchSampler(BatchSampler): pass class TestModel(BoringModel): def __init__(self, numbers_test_dataloaders, mode): super().__init__() self._numbers_test_dataloaders = numbers_test_dataloaders self._mode = mode def test_step(self, batch, batch_idx, dataloader_idx=None): return super().test_step(batch, batch_idx) def on_test_start(self) -> None: dataloader = self.trainer.test_dataloaders[0] assert isinstance(dataloader, CustomDataLoader) batch_sampler = dataloader.batch_sampler if self._mode == 2: assert isinstance(batch_sampler, CustomBatchSampler) # the batch_size is set on the batch sampler assert dataloader.batch_size is None elif self._mode == 3: assert type(batch_sampler) is BatchSampler assert dataloader.batch_size == self._mode assert batch_sampler.batch_size == self._mode assert batch_sampler.drop_last # the sampler has been replaced assert isinstance(batch_sampler.sampler, DistributedSampler) def create_dataset(self): dataset = IndexedRandomDataset(32, 64) if self._mode == 1: # this case will raise an error return FailureCustomDataLoader(32, dataset) if self._mode == 2: # with a custom batch sampler batch_sampler = CustomBatchSampler(SequentialSampler(dataset), batch_size=2, drop_last=True) return CustomDataLoader(32, dataset, batch_sampler=batch_sampler) elif self._mode == 3: # with no batch sampler provided return CustomDataLoader(32, dataset, batch_size=3, drop_last=True) def test_dataloader(self): return [self.create_dataset()] * self._numbers_test_dataloaders model = TestModel(2, mode) model.test_epoch_end = None trainer = Trainer( default_root_dir=tmpdir, limit_test_batches=2, plugins="ddp_find_unused_parameters_false", num_processes=1 ) if mode == 1: match = escape("missing attributes are ['num_features']") with pytest.raises(MisconfigurationException, match=match): trainer.test(model) else: trainer.test(model) @pytest.mark.parametrize("num_workers", [0, 1]) def test_dataloader_warnings(num_workers): class TestModel(BoringModel): def on_train_start(self, *_) -> None: raise SystemExit() dl = DataLoader(RandomDataset(32, 64), num_workers=num_workers) if hasattr(dl, "persistent_workers"): if num_workers == 0: warn_str = "Consider setting num_workers>0 and persistent_workers=True" else: warn_str = "Consider setting persistent_workers=True" else: warn_str = "Consider setting accelerator=ddp" trainer = Trainer(accelerator="ddp_spawn") with pytest.warns(UserWarning, match=warn_str), pytest.raises(SystemExit): trainer.fit(TestModel(), dl) def test_replace_sampler_raises(): trainer = Trainer() with pytest.raises(ValueError, match="needs to subclass `torch.utils.data.DataLoader"): trainer.replace_sampler(object(), object(), mode="fit") def test_dataloaders_with_missing_keyword_arguments(): trainer = Trainer() ds = RandomDataset(10, 20) class TestDataLoader(DataLoader): def __init__(self, dataset): super().__init__(dataset) loader = TestDataLoader(ds) sampler = SequentialSampler(ds) match = escape("missing arguments are ['batch_sampler', 'sampler', 'shuffle']") with pytest.raises(MisconfigurationException, match=match): trainer.replace_sampler(loader, sampler, mode="fit") match = escape("missing arguments are ['batch_sampler', 'batch_size', 'drop_last', 'sampler', 'shuffle']") with pytest.raises(MisconfigurationException, match=match): trainer.replace_sampler(loader, sampler, mode="predict") class TestDataLoader(DataLoader): def __init__(self, dataset, *args, **kwargs): super().__init__(dataset) loader = TestDataLoader(ds) sampler = SequentialSampler(ds) trainer.replace_sampler(loader, sampler, mode="fit") trainer.replace_sampler(loader, sampler, mode="predict") class TestDataLoader(DataLoader): def __init__(self, *foo, **bar): super().__init__(*foo, **bar) loader = TestDataLoader(ds) sampler = SequentialSampler(ds) trainer.replace_sampler(loader, sampler, mode="fit") trainer.replace_sampler(loader, sampler, mode="predict") class TestDataLoader(DataLoader): def __init__(self, num_feat, dataset, *args, shuffle=False): self.num_feat = num_feat super().__init__(dataset) loader = TestDataLoader(1, ds) sampler = SequentialSampler(ds) match = escape("missing arguments are ['batch_sampler', 'sampler']") with pytest.raises(MisconfigurationException, match=match): trainer.replace_sampler(loader, sampler, mode="fit") match = escape("missing arguments are ['batch_sampler', 'batch_size', 'drop_last', 'sampler']") with pytest.raises(MisconfigurationException, match=match): trainer.replace_sampler(loader, sampler, mode="predict") class TestDataLoader(DataLoader): def __init__(self, num_feat, dataset, **kwargs): self.feat_num = num_feat super().__init__(dataset) loader = TestDataLoader(1, ds) sampler = SequentialSampler(ds) match = escape("missing attributes are ['num_feat']") with pytest.raises(MisconfigurationException, match=match): trainer.replace_sampler(loader, sampler, mode="fit") match = escape("missing attributes are ['num_feat']") with pytest.raises(MisconfigurationException, match=match): trainer.replace_sampler(loader, sampler, mode="predict") def test_replace_sampler_with_multiprocessing_context(): """This test verifies that replace_sampler conserves multiprocessing context.""" train = RandomDataset(32, 64) context = "spawn" train = DataLoader(train, batch_size=32, num_workers=2, multiprocessing_context=context, shuffle=True) trainer = Trainer() new_data_loader = trainer.replace_sampler(train, SequentialSampler(train.dataset)) assert new_data_loader.multiprocessing_context == train.multiprocessing_context def test_dataloader_reinit_for_subclass(): class CustomDataLoader(DataLoader): def __init__( self, dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, dummy_kwarg=None, ): super().__init__( dataset, batch_size, shuffle, sampler, batch_sampler, num_workers, collate_fn, pin_memory, drop_last, timeout, worker_init_fn, ) self.dummy_kwarg = dummy_kwarg self.something_unrelated = 1 trainer = Trainer(num_processes=1, accelerator="ddp_cpu") class CustomDummyObj: sampler = None result = trainer.auto_add_sampler(CustomDummyObj(), shuffle=True) assert isinstance(result, CustomDummyObj), "Wrongly reinstantiated data loader" dataset = list(range(10)) result = trainer.auto_add_sampler(CustomDataLoader(dataset), shuffle=True) assert isinstance(result, DataLoader) assert isinstance(result, CustomDataLoader) assert result.dummy_kwarg is None # Shuffled DataLoader should also work result = trainer.auto_add_sampler(CustomDataLoader(dataset, shuffle=True), shuffle=True) assert isinstance(result, DataLoader) assert isinstance(result, CustomDataLoader) assert result.dummy_kwarg is None class CustomSampler(Sampler): pass # Should raise an error if existing sampler is being replaced dataloader = CustomDataLoader(dataset, sampler=CustomSampler(dataset)) with pytest.raises(MisconfigurationException, match="will be replaced by `DistributedSampler`"): trainer.auto_add_sampler(dataloader, shuffle=True) def test_loader_detaching(): """Checks that the loader has been resetted after the entrypoint.""" class LoaderTestModel(BoringModel): def training_step(self, batch, batch_idx): assert len(model.train_dataloader()) == 10 return super().training_step(batch, batch_idx) def validation_step(self, batch, batch_idx): assert len(model.val_dataloader()) == 10 return super().validation_step(batch, batch_idx) def test_step(self, batch, batch_idx): assert len(model.test_dataloader()) == 10 return super().test_step(batch, batch_idx) def predict_step(self, batch, batch_idx, dataloader_idx=None): assert len(model.predict_dataloader()) == 10 return super().predict_step(batch, batch_idx, dataloader_idx=dataloader_idx) loader = DataLoader(RandomDataset(32, 10), batch_size=1) model = LoaderTestModel() assert len(model.train_dataloader()) == 64 assert len(model.val_dataloader()) == 64 assert len(model.predict_dataloader()) == 64 assert len(model.test_dataloader()) == 64 trainer = Trainer(fast_dev_run=1) trainer.fit(model, loader, loader) assert len(model.train_dataloader()) == 64 assert len(model.val_dataloader()) == 64 assert len(model.predict_dataloader()) == 64 assert len(model.test_dataloader()) == 64 trainer.validate(model, loader) assert len(model.train_dataloader()) == 64 assert len(model.val_dataloader()) == 64 assert len(model.predict_dataloader()) == 64 assert len(model.test_dataloader()) == 64 trainer.predict(model, loader) assert len(model.train_dataloader()) == 64 assert len(model.val_dataloader()) == 64 assert len(model.predict_dataloader()) == 64 assert len(model.test_dataloader()) == 64 trainer.test(model, loader) assert len(model.train_dataloader()) == 64 assert len(model.val_dataloader()) == 64 assert len(model.predict_dataloader()) == 64 assert len(model.test_dataloader()) == 64