# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import torch from pytorch_lightning import Trainer from tests.helpers.boring_model import BoringModel, RandomDataset def test_overfit_multiple_val_loaders(tmpdir): """Tests that only training_step can be used.""" class TestModel(BoringModel): def validation_step(self, batch, batch_idx, dataloader_idx): output = self.layer(batch[0]) loss = self.loss(batch, output) return {"x": loss} def validation_epoch_end(self, outputs) -> None: pass def val_dataloader(self): dl1 = torch.utils.data.DataLoader(RandomDataset(32, 64)) dl2 = torch.utils.data.DataLoader(RandomDataset(32, 64)) return [dl1, dl2] model = TestModel() trainer = Trainer( default_root_dir=tmpdir, max_epochs=2, overfit_batches=1, log_every_n_steps=1, weights_summary=None ) trainer.fit(model) @pytest.mark.parametrize("overfit", [1, 2, 0.1, 0.25, 1.0]) def test_overfit_basic(tmpdir, overfit): """Tests that only training_step can be used.""" model = BoringModel() trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, overfit_batches=overfit, weights_summary=None) trainer.fit(model)