# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """General utilities.""" import importlib import operator import platform import sys from importlib.util import find_spec from typing import Callable import pkg_resources import torch from packaging.version import Version from pkg_resources import DistributionNotFound def _module_available(module_path: str) -> bool: """Check if a path is available in your environment. >>> _module_available('os') True >>> _module_available('bla.bla') False """ try: return find_spec(module_path) is not None except ModuleNotFoundError: return False def _compare_version(package: str, op: Callable, version: str, use_base_version: bool = False) -> bool: """Compare package version with some requirements. >>> _compare_version("torch", operator.ge, "0.1") True """ try: pkg = importlib.import_module(package) except (ModuleNotFoundError, DistributionNotFound): return False try: if hasattr(pkg, "__version__"): pkg_version = Version(pkg.__version__) else: # try pkg_resources to infer version pkg_version = Version(pkg_resources.get_distribution(package).version) except TypeError: # this is mocked by Sphinx, so it should return True to generate all summaries return True if use_base_version: pkg_version = Version(pkg_version.base_version) return op(pkg_version, Version(version)) _IS_WINDOWS = platform.system() == "Windows" _IS_INTERACTIVE = hasattr(sys, "ps1") # https://stackoverflow.com/a/64523765 _TORCH_GREATER_EQUAL_1_8 = _compare_version("torch", operator.ge, "1.8.0") _TORCH_GREATER_EQUAL_1_8_1 = _compare_version("torch", operator.ge, "1.8.1") _TORCH_GREATER_EQUAL_1_9 = _compare_version("torch", operator.ge, "1.9.0") _TORCH_GREATER_EQUAL_1_10 = _compare_version("torch", operator.ge, "1.10.0") # _TORCH_GREATER_EQUAL_DEV_1_11 = _compare_version("torch", operator.ge, "1.11.0", use_base_version=True) _APEX_AVAILABLE = _module_available("apex.amp") _DEEPSPEED_AVAILABLE = _module_available("deepspeed") _FAIRSCALE_AVAILABLE = not _IS_WINDOWS and _module_available("fairscale.nn") _FAIRSCALE_OSS_FP16_BROADCAST_AVAILABLE = _FAIRSCALE_AVAILABLE and _compare_version("fairscale", operator.ge, "0.3.3") _FAIRSCALE_FULLY_SHARDED_AVAILABLE = _FAIRSCALE_AVAILABLE and _compare_version("fairscale", operator.ge, "0.3.4") _GROUP_AVAILABLE = not _IS_WINDOWS and _module_available("torch.distributed.group") _HOROVOD_AVAILABLE = _module_available("horovod.torch") _HYDRA_AVAILABLE = _module_available("hydra") _HYDRA_EXPERIMENTAL_AVAILABLE = _module_available("hydra.experimental") _JSONARGPARSE_AVAILABLE = _module_available("jsonargparse") and _compare_version("jsonargparse", operator.ge, "4.0.0") _KINETO_AVAILABLE = _TORCH_GREATER_EQUAL_1_8_1 and torch.profiler.kineto_available() _NEPTUNE_AVAILABLE = _module_available("neptune") _NEPTUNE_GREATER_EQUAL_0_9 = _NEPTUNE_AVAILABLE and _compare_version("neptune", operator.ge, "0.9.0") _OMEGACONF_AVAILABLE = _module_available("omegaconf") _POPTORCH_AVAILABLE = _module_available("poptorch") _RICH_AVAILABLE = _module_available("rich") and _compare_version("rich", operator.ge, "10.2.2") _TORCH_QUANTIZE_AVAILABLE = bool([eg for eg in torch.backends.quantized.supported_engines if eg != "none"]) _TORCHTEXT_AVAILABLE = _module_available("torchtext") _TORCHTEXT_LEGACY: bool = _TORCHTEXT_AVAILABLE and _compare_version("torchtext", operator.lt, "0.11.0") _TORCHVISION_AVAILABLE = _module_available("torchvision") _XLA_AVAILABLE: bool = _module_available("torch_xla") from pytorch_lightning.utilities.xla_device import XLADeviceUtils # noqa: E402 _TPU_AVAILABLE = XLADeviceUtils.tpu_device_exists() if _POPTORCH_AVAILABLE: import poptorch _IPU_AVAILABLE = poptorch.ipuHardwareIsAvailable() else: _IPU_AVAILABLE = False # experimental feature within PyTorch Lightning. def _fault_tolerant_training() -> bool: from pytorch_lightning.utilities.enums import _FaultTolerantMode return _FaultTolerantMode.detect_current_mode().is_enabled