# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pytorch_lightning import Trainer from tests.helpers.boring_model import BoringModel from tests.helpers.runif import RunIf class TrainerGetModel(BoringModel): def on_fit_start(self): assert self == self.trainer.lightning_module def on_fit_end(self): assert self == self.trainer.lightning_module def test_get_model(tmpdir): """ Tests that `trainer.lightning_module` extracts the model correctly """ model = TrainerGetModel() limit_train_batches = 2 trainer = Trainer( default_root_dir=tmpdir, limit_train_batches=limit_train_batches, limit_val_batches=2, max_epochs=1 ) trainer.fit(model) @RunIf(skip_windows=True) def test_get_model_ddp_cpu(tmpdir): """ Tests that `trainer.lightning_module` extracts the model correctly when using ddp on cpu """ model = TrainerGetModel() limit_train_batches = 2 trainer = Trainer( default_root_dir=tmpdir, limit_train_batches=limit_train_batches, limit_val_batches=2, max_epochs=1, accelerator="ddp_cpu", num_processes=2, ) trainer.fit(model) @RunIf(min_gpus=1) def test_get_model_gpu(tmpdir): """ Tests that `trainer.lightning_module` extracts the model correctly when using GPU """ model = TrainerGetModel() limit_train_batches = 2 trainer = Trainer( default_root_dir=tmpdir, limit_train_batches=limit_train_batches, limit_val_batches=2, max_epochs=1, gpus=1 ) trainer.fit(model)