import os from unittest import mock import pytest import torch from pytorch_lightning import LightningModule, Trainer from pytorch_lightning.callbacks import Callback from pytorch_lightning.plugins import DDPShardedPlugin, DDPSpawnShardedPlugin from pytorch_lightning.trainer.states import TrainerFn from pytorch_lightning.utilities import _FAIRSCALE_AVAILABLE from pytorch_lightning.utilities.exceptions import MisconfigurationException from tests.helpers.boring_model import BoringModel from tests.helpers.runif import RunIf if _FAIRSCALE_AVAILABLE: from fairscale.nn.data_parallel.sharded_ddp import ShardedDataParallel @pytest.mark.parametrize("clip_val", [0, 10]) @RunIf(min_gpus=1, skip_windows=True, amp_native=True, fairscale=True) @mock.patch("fairscale.optim.oss.OSS.clip_grad_norm") def test_ddp_sharded_precision_16_clip_gradients(mock_oss_clip_grad_norm, clip_val, tmpdir): """ Ensure that clip gradients is only called if the value is greater than 0. """ model = BoringModel() trainer = Trainer(accelerator="ddp_sharded", gpus=1, precision=16, fast_dev_run=True, gradient_clip_val=clip_val) trainer.fit(model) if clip_val > 0: mock_oss_clip_grad_norm.assert_called() else: mock_oss_clip_grad_norm.assert_not_called() @RunIf(fairscale=True) @pytest.mark.parametrize(["accelerator"], [("ddp_sharded",), ("ddp_sharded_spawn",)]) def test_sharded_ddp_choice(tmpdir, accelerator): """ Test to ensure that plugin is correctly chosen """ class CB(Callback): def on_fit_start(self, trainer, pl_module): if accelerator == "ddp_sharded": assert isinstance(trainer.accelerator.training_type_plugin, DDPShardedPlugin) elif accelerator == "ddp_sharded_spawn": assert isinstance(trainer.accelerator.training_type_plugin, DDPSpawnShardedPlugin) raise SystemExit() model = BoringModel() trainer = Trainer(fast_dev_run=True, accelerator=accelerator, callbacks=[CB()]) with pytest.raises(SystemExit): trainer.fit(model) @RunIf(amp_apex=True, fairscale=True) def test_invalid_apex_sharded(tmpdir): """ Test to ensure that we raise an error when we try to use apex and sharded """ model = BoringModel() with pytest.raises(MisconfigurationException, match="Sharded Plugin is not supported with Apex AMP"): trainer = Trainer(fast_dev_run=True, accelerator="ddp_sharded_spawn", precision=16, amp_backend="apex") trainer.fit(model) @RunIf(min_gpus=2, amp_native=True, fairscale=True) @pytest.mark.parametrize(["accelerator"], [("ddp_sharded",), ("ddp_sharded_spawn",)]) def test_ddp_choice_sharded_amp(tmpdir, accelerator): """ Test to ensure that plugin native amp plugin is correctly chosen when using sharded """ class CB(Callback): def on_fit_start(self, trainer, pl_module): if accelerator == "ddp_sharded": assert isinstance(trainer.accelerator.training_type_plugin, DDPShardedPlugin) elif accelerator == "ddp_sharded_spawn": assert isinstance(trainer.accelerator.training_type_plugin, DDPSpawnShardedPlugin) raise SystemExit() model = BoringModel() trainer = Trainer(fast_dev_run=True, gpus=1, precision=16, accelerator=accelerator, callbacks=[CB()]) with pytest.raises(SystemExit): trainer.fit(model) @RunIf(skip_windows=True, fairscale=True) def test_ddp_sharded_plugin_checkpoint_cpu(tmpdir): """ Test to ensure that checkpoint is saved correctly """ model = BoringModel() trainer = Trainer(accelerator="ddp_sharded_spawn", num_processes=2, fast_dev_run=True) trainer.fit(model) checkpoint_path = os.path.join(tmpdir, "model.pt") trainer.save_checkpoint(checkpoint_path) saved_model = BoringModel.load_from_checkpoint(checkpoint_path) # Assert model parameters are identical after loading for ddp_param, shard_param in zip(model.parameters(), saved_model.parameters()): assert torch.equal(ddp_param.to("cpu"), shard_param) @RunIf(min_gpus=2, skip_windows=True, fairscale=True) def test_ddp_sharded_plugin_checkpoint_multi_gpu(tmpdir): """ Test to ensure that checkpoint is saved correctly when using multiple GPUs """ model = BoringModel() trainer = Trainer(gpus=2, accelerator="ddp_sharded_spawn", fast_dev_run=True) trainer.fit(model) checkpoint_path = os.path.join(tmpdir, "model.pt") trainer.save_checkpoint(checkpoint_path) saved_model = BoringModel.load_from_checkpoint(checkpoint_path) # Assert model parameters are identical after loading for ddp_param, shard_param in zip(model.parameters(), saved_model.parameters()): assert torch.equal(ddp_param.to("cpu"), shard_param) @RunIf(min_gpus=2, skip_windows=True, fairscale=True) def test_ddp_sharded_plugin_finetune(tmpdir): """ Test to ensure that we can save and restart training (simulate fine-tuning) """ model = BoringModel() trainer = Trainer(gpus=2, accelerator="ddp_sharded_spawn", fast_dev_run=True) trainer.fit(model) checkpoint_path = os.path.join(tmpdir, "model.pt") trainer.save_checkpoint(checkpoint_path) saved_model = BoringModel.load_from_checkpoint(checkpoint_path) trainer = Trainer(fast_dev_run=True) trainer.fit(saved_model) @RunIf(skip_windows=True, fairscale=True) def test_ddp_sharded_plugin_resume_from_checkpoint(tmpdir): """ Test to ensure that resuming from checkpoint works """ model = BoringModel() trainer = Trainer(accelerator="ddp_sharded_spawn", num_processes=2, fast_dev_run=True) trainer.fit(model) checkpoint_path = os.path.join(tmpdir, "model.pt") trainer.save_checkpoint(checkpoint_path) model = BoringModel() trainer = Trainer( accelerator="ddp_sharded_spawn", num_processes=2, fast_dev_run=True, resume_from_checkpoint=checkpoint_path ) trainer.fit(model) @pytest.mark.skip(reason="Not a critical test, skip till drone CI performance improves.") # todo @pytest.mark.skip(reason="Currently unsupported restarting training on different number of devices.") @RunIf(min_gpus=2, skip_windows=True, fairscale=True) def test_ddp_sharded_plugin_resume_from_checkpoint_downsize_gpus(tmpdir): """ Test to ensure that resuming from checkpoint works when downsizing number of GPUS """ model = BoringModel() trainer = Trainer(accelerator="ddp_sharded_spawn", fast_dev_run=True, gpus=2) trainer.fit(model) checkpoint_path = os.path.join(tmpdir, "model.pt") trainer.save_checkpoint(checkpoint_path) model = BoringModel() trainer = Trainer( accelerator="ddp_sharded_spawn", fast_dev_run=True, gpus=1, resume_from_checkpoint=checkpoint_path ) trainer.fit(model) @RunIf(min_gpus=1, skip_windows=True, fairscale=True) def test_ddp_sharded_plugin_resume_from_checkpoint_gpu_to_cpu(tmpdir): """ Test to ensure that resuming from checkpoint works when going from GPUs- > CPU """ model = BoringModel() trainer = Trainer(accelerator="ddp_sharded_spawn", gpus=1, fast_dev_run=True) trainer.fit(model) checkpoint_path = os.path.join(tmpdir, "model.pt") trainer.save_checkpoint(checkpoint_path) model = BoringModel() trainer = Trainer( accelerator="ddp_sharded_spawn", num_processes=2, fast_dev_run=True, resume_from_checkpoint=checkpoint_path ) trainer.fit(model) @RunIf(skip_windows=True, special=True, fairscale=True) @pytest.mark.parametrize("trainer_kwargs", (dict(num_processes=2), pytest.param(dict(gpus=2), marks=RunIf(min_gpus=2)))) def test_ddp_sharded_plugin_test_multigpu(tmpdir, trainer_kwargs): """ Test to ensure we can use validate and test without fit """ model = BoringModel() trainer = Trainer(accelerator="ddp_sharded_spawn", fast_dev_run=True, **trainer_kwargs) trainer.validate(model) trainer.test(model) class ManualBoringModel(BoringModel): def __init__(self): super().__init__() self.automatic_optimization = False def training_step(self, batch, batch_idx): opt = self.optimizers() opt.zero_grad() output = self(batch) loss = self.loss(batch, output) self.manual_backward(loss) opt.step() return {"loss": loss} @RunIf(skip_windows=True, special=True, fairscale=True, min_gpus=2) def test_ddp_sharded_plugin_manual_optimization_spawn(tmpdir): # todo (sean): this test has been split out as running both tests using parametrize causes "Address in use" model = ManualBoringModel() trainer = Trainer(default_root_dir=tmpdir, accelerator="ddp_sharded_spawn", fast_dev_run=2, gpus=2) trainer.fit(model) @RunIf(skip_windows=True, special=True, fairscale=True, min_gpus=2) def test_ddp_sharded_plugin_manual_optimization(tmpdir): model = ManualBoringModel() trainer = Trainer(default_root_dir=tmpdir, accelerator="ddp_sharded", fast_dev_run=2, gpus=2) trainer.fit(model) class BoringModelSharded(BoringModel): def on_train_start(self) -> None: """Check if trainer module is wrapped as ShardedDataParallel during training stage.""" assert isinstance(self.trainer.model, ShardedDataParallel) def on_test_start(self) -> None: """Check if trainer module remains as LightningModule during test stage.""" assert isinstance(self.trainer.model, LightningModule) def on_validation_start(self) -> None: """Check if trainer module remains as LightningModule during test stage.""" if self.trainer.state.fn == TrainerFn.FITTING: assert isinstance(self.trainer.model, ShardedDataParallel) else: assert isinstance(self.trainer.model, LightningModule) def on_predict_start(self) -> None: """Check if trainer module remains as LightningModule during prediction stage.""" assert isinstance(self.trainer.model, LightningModule) @RunIf(skip_windows=True, fairscale=True) def test_configure_ddp(tmpdir): """Tests with ddp sharded plugin.""" trainer = Trainer(default_root_dir=tmpdir, accelerator="ddp_sharded", fast_dev_run=True) model = BoringModelSharded() trainer.fit(model) trainer.test(model, dataloaders=model.test_dataloader()) trainer.validate(model, dataloaders=model.val_dataloader()) trainer.predict(model, dataloaders=model.predict_dataloader())