# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest.mock import patch import numpy as np import pytest from pytorch_lightning import Trainer from tests.helpers import BoringModel from tests.helpers.utils import reset_seed class ModelWithManualGradTracker(BoringModel): def __init__(self, norm_type, *args, **kwargs): super().__init__(*args, **kwargs) self.stored_grad_norms, self.norm_type = [], float(norm_type) # validation spoils logger's metrics with `val_loss` records validation_step = None val_dataloader = None def training_step(self, batch, batch_idx, optimizer_idx=None): # just return a loss, no log or progress bar meta output = self(batch) loss = self.loss(batch, output) return {"loss": loss} def on_after_backward(self): out, norms = {}, [] prefix = f"grad_{self.norm_type}_norm_" for name, p in self.named_parameters(): if p.grad is None: continue # `np.linalg.norm` implementation likely uses fp64 intermediates flat = p.grad.data.cpu().numpy().ravel() norm = np.linalg.norm(flat, self.norm_type) norms.append(norm) out[prefix + name] = round(norm, 4) # handle total norm norm = np.linalg.norm(norms, self.norm_type) out[prefix + "total"] = round(norm, 4) self.stored_grad_norms.append(out) @pytest.mark.parametrize("norm_type", [1.0, 1.25, 2, 3, 5, 10, "inf"]) def test_grad_tracking(tmpdir, norm_type, rtol=5e-3): # rtol=5e-3 respects the 3 decimals rounding in `.grad_norms` and above reset_seed() class TestModel(ModelWithManualGradTracker): logged_metrics = [] def on_train_batch_end(self, *_) -> None: # copy so they don't get reduced self.logged_metrics.append(self.trainer.logged_metrics.copy()) model = TestModel(norm_type) trainer = Trainer( default_root_dir=tmpdir, max_epochs=3, track_grad_norm=norm_type, log_every_n_steps=1, # request grad_norms every batch ) trainer.fit(model) assert trainer.state.finished, f"Training failed with {trainer.state}" assert len(model.logged_metrics) == len(model.stored_grad_norms) # compare the logged metrics against tracked norms on `.backward` for mod, log in zip(model.stored_grad_norms, model.logged_metrics): for k in mod.keys() & log.keys(): assert np.allclose(mod[k], log[k], rtol=rtol), k @pytest.mark.parametrize("log_every_n_steps", [1, 2, 3]) def test_grad_tracking_interval(tmpdir, log_every_n_steps): """Test that gradient norms get tracked in the right interval and that everytime the same keys get logged.""" trainer = Trainer(default_root_dir=tmpdir, track_grad_norm=2, log_every_n_steps=log_every_n_steps, max_steps=10) with patch.object(trainer.logger, "log_metrics") as mocked: model = BoringModel() trainer.fit(model) expected = trainer.global_step // log_every_n_steps grad_norm_dicts = [] for _, kwargs in mocked.call_args_list: metrics = kwargs.get("metrics", {}) grad_norm_dict = {k: v for k, v in metrics.items() if k.startswith("grad_")} if grad_norm_dict: grad_norm_dicts.append(grad_norm_dict) # logging on n steps + 1 epochs assert len(grad_norm_dicts) == expected + 1 # check all metrics derived from steps have the same keys assert all(grad_norm_dicts[0].keys() == g.keys() for g in grad_norm_dicts[:-1]) epoch_end_keys = [k.replace("step", "epoch") for k in grad_norm_dicts[0]] assert epoch_end_keys == list(grad_norm_dicts[-1])