# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys from typing import Optional import pytest import torch from packaging.version import Version from pkg_resources import get_distribution from pytorch_lightning.utilities import ( _APEX_AVAILABLE, _DEEPSPEED_AVAILABLE, _FAIRSCALE_AVAILABLE, _FAIRSCALE_FULLY_SHARDED_AVAILABLE, _HOROVOD_AVAILABLE, _IPU_AVAILABLE, _NATIVE_AMP_AVAILABLE, _RICH_AVAILABLE, _TORCH_QUANTIZE_AVAILABLE, _TPU_AVAILABLE, ) try: from horovod.common.util import nccl_built nccl_built() except (ImportError, ModuleNotFoundError, AttributeError): _HOROVOD_NCCL_AVAILABLE = False finally: _HOROVOD_NCCL_AVAILABLE = True class RunIf: """ RunIf wrapper for simple marking specific cases, fully compatible with pytest.mark:: @RunIf(min_torch="0.0") @pytest.mark.parametrize("arg1", [1, 2.0]) def test_wrapper(arg1): assert arg1 > 0.0 """ def __new__( self, *args, min_gpus: int = 0, min_torch: Optional[str] = None, max_torch: Optional[str] = None, min_python: Optional[str] = None, quantization: bool = False, amp_apex: bool = False, amp_native: bool = False, tpu: bool = False, ipu: bool = False, horovod: bool = False, horovod_nccl: bool = False, skip_windows: bool = False, special: bool = False, fairscale: bool = False, fairscale_fully_sharded: bool = False, deepspeed: bool = False, rich: bool = False, **kwargs, ): """ Args: args: native pytest.mark.skipif arguments min_gpus: min number of gpus required to run test min_torch: minimum pytorch version to run test max_torch: maximum pytorch version to run test min_python: minimum python version required to run test quantization: if `torch.quantization` package is required to run test amp_apex: NVIDIA Apex is installed amp_native: if native PyTorch native AMP is supported tpu: if TPU is available ipu: if IPU is available horovod: if Horovod is installed horovod_nccl: if Horovod is installed with NCCL support skip_windows: skip test for Windows platform (typically for some limited torch functionality) special: running in special mode, outside pytest suit fairscale: if `fairscale` module is required to run the test fairscale_fully_sharded: if `fairscale` fully sharded module is required to run the test deepspeed: if `deepspeed` module is required to run the test rich: if `rich` module is required to run the test kwargs: native pytest.mark.skipif keyword arguments """ conditions = [] reasons = [] if min_gpus: conditions.append(torch.cuda.device_count() < min_gpus) reasons.append(f"GPUs>={min_gpus}") if min_torch: torch_version = get_distribution("torch").version conditions.append(Version(torch_version) < Version(min_torch)) reasons.append(f"torch>={min_torch}") if max_torch: torch_version = get_distribution("torch").version conditions.append(Version(torch_version) >= Version(max_torch)) reasons.append(f"torch<{max_torch}") if min_python: py_version = f"{sys.version_info.major}.{sys.version_info.minor}.{sys.version_info.micro}" conditions.append(Version(py_version) < Version(min_python)) reasons.append(f"python>={min_python}") if quantization: _miss_default = "fbgemm" not in torch.backends.quantized.supported_engines conditions.append(not _TORCH_QUANTIZE_AVAILABLE or _miss_default) reasons.append("PyTorch quantization") if amp_native: conditions.append(not _NATIVE_AMP_AVAILABLE) reasons.append("native AMP") if amp_apex: conditions.append(not _APEX_AVAILABLE) reasons.append("NVIDIA Apex") if skip_windows: conditions.append(sys.platform == "win32") reasons.append("unimplemented on Windows") if tpu: conditions.append(not _TPU_AVAILABLE) reasons.append("TPU") if ipu: conditions.append(not _IPU_AVAILABLE) reasons.append("IPU") if horovod: conditions.append(not _HOROVOD_AVAILABLE) reasons.append("Horovod") if horovod_nccl: conditions.append(not _HOROVOD_NCCL_AVAILABLE) reasons.append("Horovod with NCCL") if special: env_flag = os.getenv("PL_RUNNING_SPECIAL_TESTS", "0") conditions.append(env_flag != "1") reasons.append("Special execution") if fairscale: conditions.append(not _FAIRSCALE_AVAILABLE) reasons.append("Fairscale") if fairscale_fully_sharded: conditions.append(not _FAIRSCALE_FULLY_SHARDED_AVAILABLE) reasons.append("Fairscale Fully Sharded") if deepspeed: conditions.append(not _DEEPSPEED_AVAILABLE) reasons.append("Deepspeed") if rich: conditions.append(not _RICH_AVAILABLE) reasons.append("Rich") reasons = [rs for cond, rs in zip(conditions, reasons) if cond] return pytest.mark.skipif( *args, condition=any(conditions), reason=f"Requires: [{' + '.join(reasons)}]", **kwargs ) @RunIf(min_torch="99") def test_always_skip(): exit(1) @pytest.mark.parametrize("arg1", [0.5, 1.0, 2.0]) @RunIf(min_torch="0.0") def test_wrapper(arg1: float): assert arg1 > 0.0