# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest import mock import pytest from pytorch_lightning import Trainer from pytorch_lightning.callbacks import ProgressBarBase, RichProgressBar from tests.helpers.boring_model import BoringModel from tests.helpers.runif import RunIf @RunIf(rich=True) def test_rich_progress_bar_callback(): trainer = Trainer(callbacks=RichProgressBar()) progress_bars = [c for c in trainer.callbacks if isinstance(c, ProgressBarBase)] assert len(progress_bars) == 1 assert isinstance(trainer.progress_bar_callback, RichProgressBar) @RunIf(rich=True) @mock.patch("pytorch_lightning.callbacks.progress.rich_progress.Progress.update") def test_rich_progress_bar(progress_update, tmpdir): model = BoringModel() trainer = Trainer( default_root_dir=tmpdir, num_sanity_val_steps=0, limit_train_batches=1, limit_val_batches=1, limit_test_batches=1, limit_predict_batches=1, max_steps=1, callbacks=RichProgressBar(), ) trainer.fit(model) trainer.test(model) trainer.predict(model) assert progress_update.call_count == 6 def test_rich_progress_bar_import_error(): with pytest.raises(ImportError, match="`RichProgressBar` requires `rich` to be installed."): Trainer(callbacks=RichProgressBar())