# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path from re import escape from unittest.mock import call, Mock import pytest from pytorch_lightning import Callback, Trainer from pytorch_lightning.callbacks import ModelCheckpoint from tests.helpers import BoringModel from tests.helpers.utils import no_warning_call def test_callbacks_configured_in_model(tmpdir): """Test the callback system with callbacks added through the model hook.""" model_callback_mock = Mock() trainer_callback_mock = Mock() class TestModel(BoringModel): def configure_callbacks(self): return [model_callback_mock] model = TestModel() trainer_options = dict( default_root_dir=tmpdir, checkpoint_callback=False, fast_dev_run=True, progress_bar_refresh_rate=0 ) def assert_expected_calls(_trainer, model_callback, trainer_callback): # some methods in callbacks configured through model won't get called uncalled_methods = [call.on_init_start(_trainer), call.on_init_end(_trainer)] for uncalled in uncalled_methods: assert uncalled not in model_callback.method_calls # assert that the rest of calls are the same as for trainer callbacks expected_calls = [m for m in trainer_callback.method_calls if m not in uncalled_methods] assert expected_calls assert model_callback.method_calls == expected_calls # .fit() trainer_options.update(callbacks=[trainer_callback_mock]) trainer = Trainer(**trainer_options) assert trainer_callback_mock in trainer.callbacks assert model_callback_mock not in trainer.callbacks trainer.fit(model) assert model_callback_mock in trainer.callbacks assert trainer.callbacks[-1] == model_callback_mock assert_expected_calls(trainer, model_callback_mock, trainer_callback_mock) # .test() for fn in ("test", "validate"): model_callback_mock.reset_mock() trainer_callback_mock.reset_mock() trainer_options.update(callbacks=[trainer_callback_mock]) trainer = Trainer(**trainer_options) trainer_fn = getattr(trainer, fn) trainer_fn(model) assert model_callback_mock in trainer.callbacks assert trainer.callbacks[-1] == model_callback_mock assert_expected_calls(trainer, model_callback_mock, trainer_callback_mock) def test_configure_callbacks_hook_multiple_calls(tmpdir): """Test that subsequent calls to `configure_callbacks` do not change the callbacks list.""" model_callback_mock = Mock() class TestModel(BoringModel): def configure_callbacks(self): return [model_callback_mock] model = TestModel() trainer = Trainer( default_root_dir=tmpdir, fast_dev_run=True, checkpoint_callback=False, progress_bar_refresh_rate=1 ) callbacks_before_fit = trainer.callbacks.copy() assert callbacks_before_fit trainer.fit(model) callbacks_after_fit = trainer.callbacks.copy() assert callbacks_after_fit == callbacks_before_fit + [model_callback_mock] for fn in ("test", "validate"): trainer_fn = getattr(trainer, fn) trainer_fn(model) callbacks_after = trainer.callbacks.copy() assert callbacks_after == callbacks_after_fit trainer_fn(model) callbacks_after = trainer.callbacks.copy() assert callbacks_after == callbacks_after_fit class OldStatefulCallback(Callback): def __init__(self, state): self.state = state @property def state_key(self): return type(self) def on_save_checkpoint(self, *args): return {"state": self.state} def on_load_checkpoint(self, trainer, pl_module, callback_state): self.state = callback_state["state"] def test_resume_callback_state_saved_by_type(tmpdir): """Test that a legacy checkpoint that didn't use a state key before can still be loaded.""" model = BoringModel() callback = OldStatefulCallback(state=111) trainer = Trainer(default_root_dir=tmpdir, max_steps=1, callbacks=[callback]) trainer.fit(model) ckpt_path = Path(trainer.checkpoint_callback.best_model_path) assert ckpt_path.exists() callback = OldStatefulCallback(state=222) trainer = Trainer(default_root_dir=tmpdir, max_steps=2, callbacks=[callback], resume_from_checkpoint=ckpt_path) trainer.fit(model) assert callback.state == 111 def test_resume_incomplete_callbacks_list_warning(tmpdir): model = BoringModel() callback0 = ModelCheckpoint(monitor="epoch") callback1 = ModelCheckpoint(monitor="global_step") trainer = Trainer( default_root_dir=tmpdir, max_steps=1, callbacks=[callback0, callback1], ) trainer.fit(model) ckpt_path = trainer.checkpoint_callback.best_model_path trainer = Trainer( default_root_dir=tmpdir, max_steps=1, callbacks=[callback1], # one callback is missing! resume_from_checkpoint=ckpt_path, ) with pytest.warns(UserWarning, match=escape(f"Please add the following callbacks: [{repr(callback0.state_key)}]")): trainer.fit(model) trainer = Trainer( default_root_dir=tmpdir, max_steps=1, callbacks=[callback1, callback0], # all callbacks here, order switched resume_from_checkpoint=ckpt_path, ) with no_warning_call(UserWarning, match="Please add the following callbacks:"): trainer.fit(model)