# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC import torch from pytorch_lightning.utilities import DistributedType class TestEpochEndVariations(ABC): def test_epoch_end(self, outputs): """ Called at the end of test epoch to aggregate outputs :param outputs: list of individual outputs of each validation step :return: """ # if returned a scalar from test_step, outputs is a list of tensor scalars # we return just the average in this case (if we want) # return torch.stack(outputs).mean() test_loss_mean = 0 test_acc_mean = 0 for output in outputs: test_loss = self.get_output_metric(output, "test_loss") # reduce manually when using dp if self.trainer._distrib_type == DistributedType.DP: test_loss = torch.mean(test_loss) test_loss_mean += test_loss # reduce manually when using dp test_acc = self.get_output_metric(output, "test_acc") if self.trainer._distrib_type == DistributedType.DP: test_acc = torch.mean(test_acc) test_acc_mean += test_acc test_loss_mean /= len(outputs) test_acc_mean /= len(outputs) metrics_dict = {"test_loss": test_loss_mean, "test_acc": test_acc_mean} result = {"progress_bar": metrics_dict, "log": metrics_dict} return result def test_epoch_end__multiple_dataloaders(self, outputs): """ Called at the end of test epoch to aggregate outputs :param outputs: list of individual outputs of each validation step :return: """ # if returned a scalar from test_step, outputs is a list of tensor scalars # we return just the average in this case (if we want) # return torch.stack(outputs).mean() test_loss_mean = 0 test_acc_mean = 0 i = 0 for dl_output in outputs: for output in dl_output: test_loss = output["test_loss"] # reduce manually when using dp if self.trainer._distrib_type == DistributedType.DP: test_loss = torch.mean(test_loss) test_loss_mean += test_loss # reduce manually when using dp test_acc = output["test_acc"] if self.trainer._distrib_type == DistributedType.DP: test_acc = torch.mean(test_acc) test_acc_mean += test_acc i += 1 test_loss_mean /= i test_acc_mean /= i tqdm_dict = {"test_loss": test_loss_mean, "test_acc": test_acc_mean} result = {"progress_bar": tqdm_dict} return result