# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytorch_lightning as pl from pytorch_lightning.trainer.states import TrainerFn from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.utilities.model_helpers import is_overridden from pytorch_lightning.utilities.signature_utils import is_param_in_hook_signature from pytorch_lightning.utilities.warnings import rank_zero_deprecation, rank_zero_warn class ConfigValidator: def __init__(self, trainer: "pl.Trainer") -> None: self.trainer = trainer def verify_loop_configurations(self, model: "pl.LightningModule") -> None: r""" Checks that the model is configured correctly before the run is started. Args: model: The model to check the configuration. """ if self.trainer.state.fn in (TrainerFn.FITTING, TrainerFn.TUNING): self.__verify_train_loop_configuration(model) self.__verify_eval_loop_configuration(model, "val") self.__verify_manual_optimization_support(model) self.__check_training_step_requires_dataloader_iter(model) elif self.trainer.state.fn == TrainerFn.VALIDATING: self.__verify_eval_loop_configuration(model, "val") elif self.trainer.state.fn == TrainerFn.TESTING: self.__verify_eval_loop_configuration(model, "test") elif self.trainer.state.fn == TrainerFn.PREDICTING: self.__verify_predict_loop_configuration(model) self.__verify_dp_batch_transfer_support(model) def __verify_train_loop_configuration(self, model: "pl.LightningModule") -> None: # ----------------------------------- # verify model has a training step # ----------------------------------- has_training_step = is_overridden("training_step", model) if not has_training_step: raise MisconfigurationException( "No `training_step()` method defined. Lightning `Trainer` expects as minimum a" " `training_step()`, `train_dataloader()` and `configure_optimizers()` to be defined." ) # ----------------------------------- # verify model has a train dataloader # ----------------------------------- has_train_dataloader = is_overridden("train_dataloader", model) if not has_train_dataloader: raise MisconfigurationException( "No `train_dataloader()` method defined. Lightning `Trainer` expects as minimum a" " `training_step()`, `train_dataloader()` and `configure_optimizers()` to be defined." ) # ----------------------------------- # verify model has optimizer # ----------------------------------- has_optimizers = is_overridden("configure_optimizers", model) if not has_optimizers: raise MisconfigurationException( "No `configure_optimizers()` method defined. Lightning `Trainer` expects as minimum a" " `training_step()`, `train_dataloader()` and `configure_optimizers()` to be defined." ) # ---------------------------------------------- # verify model does not have # - on_train_dataloader # - on_val_dataloader # ---------------------------------------------- has_on_train_dataloader = is_overridden("on_train_dataloader", model) if has_on_train_dataloader: rank_zero_deprecation( "Method `on_train_dataloader` in DataHooks is deprecated and will be removed in v1.7.0." " Please use `train_dataloader()` directly." ) has_on_val_dataloader = is_overridden("on_val_dataloader", model) if has_on_val_dataloader: rank_zero_deprecation( "Method `on_val_dataloader` in DataHooks is deprecated and will be removed in v1.7.0." " Please use `val_dataloader()` directly." ) trainer = self.trainer trainer.overriden_optimizer_step = is_overridden("optimizer_step", model) trainer.overriden_optimizer_zero_grad = is_overridden("optimizer_zero_grad", model) automatic_optimization = model.automatic_optimization going_to_accumulate_grad_batches = trainer.accumulation_scheduler.going_to_accumulate_grad_batches() has_overriden_optimization_functions = trainer.overriden_optimizer_step or trainer.overriden_optimizer_zero_grad if has_overriden_optimization_functions and going_to_accumulate_grad_batches and automatic_optimization: rank_zero_warn( "When using `Trainer(accumulate_grad_batches != 1)` and overriding" "`LightningModule.optimizer_{step,zero_grad}`, the hooks will not be called on every batch" "(rather, they are called on every optimization step)." ) def __verify_eval_loop_configuration(self, model: "pl.LightningModule", stage: str) -> None: loader_name = f"{stage}_dataloader" step_name = "validation_step" if stage == "val" else "test_step" has_loader = is_overridden(loader_name, model) has_step = is_overridden(step_name, model) if has_loader and not has_step: rank_zero_warn(f"you passed in a {loader_name} but have no {step_name}. Skipping {stage} loop") if has_step and not has_loader: rank_zero_warn(f"you defined a {step_name} but have no {loader_name}. Skipping {stage} loop") # ---------------------------------------------- # verify model does not have # - on_val_dataloader # - on_test_dataloader # ---------------------------------------------- has_on_val_dataloader = is_overridden("on_val_dataloader", model) if has_on_val_dataloader: rank_zero_deprecation( "Method `on_val_dataloader` in DataHooks is deprecated and will be removed in v1.7.0." " Please use `val_dataloader()` directly." ) has_on_test_dataloader = is_overridden("on_test_dataloader", model) if has_on_test_dataloader: rank_zero_deprecation( "Method `on_test_dataloader` in DataHooks is deprecated and will be removed in v1.7.0." " Please use `test_dataloader()` directly." ) def __verify_predict_loop_configuration(self, model: "pl.LightningModule") -> None: has_predict_dataloader = is_overridden("predict_dataloader", model) if not has_predict_dataloader: raise MisconfigurationException("Dataloader not found for `Trainer.predict`") # ---------------------------------------------- # verify model does not have # - on_predict_dataloader # ---------------------------------------------- has_on_predict_dataloader = is_overridden("on_predict_dataloader", model) if has_on_predict_dataloader: rank_zero_deprecation( "Method `on_predict_dataloader` in DataHooks is deprecated and will be removed in v1.7.0." " Please use `predict_dataloader()` directly." ) def __verify_dp_batch_transfer_support(self, model: "pl.LightningModule") -> None: """Raise Misconfiguration exception since these hooks are not supported in DP mode""" # TODO: Remove this blocker once batch transfer to device is integrated in Lightning for DP mode. batch_transfer_hooks = ("on_before_batch_transfer", "transfer_batch_to_device", "on_after_batch_transfer") for hook in batch_transfer_hooks: if self.trainer.accelerator_connector.use_dp and is_overridden(hook, model): raise MisconfigurationException(f"Overriding `{hook}` is not supported in DP mode.") def __verify_manual_optimization_support(self, model: "pl.LightningModule") -> None: if model.automatic_optimization: return if self.trainer.gradient_clip_val > 0: raise MisconfigurationException( "Automatic gradient clipping is not supported for manual optimization." f" Remove `Trainer(gradient_clip_val={self.trainer.gradient_clip_val})`" " or switch to automatic optimization." ) if self.trainer.accumulate_grad_batches != 1: raise MisconfigurationException( "Automatic gradient accumulation is not supported for manual optimization." f" Remove `Trainer(accumulate_grad_batches={self.trainer.accumulate_grad_batches})`" " or switch to automatic optimization." ) def __check_training_step_requires_dataloader_iter(self, model: "pl.LightningModule"): """Check if the current `training_step` is requesting `dataloader_iter`.""" training_step_fx = getattr(model, "training_step") if is_param_in_hook_signature(training_step_fx, "dataloader_iter", explicit=True): if is_overridden("on_train_batch_start", model): raise MisconfigurationException( "The model hook `on_train_batch_start` is not compatible with " "taking a `dataloader_iter` argument in your `training_step`." ) if is_overridden("on_train_batch_end", model): raise MisconfigurationException( "The model hook `on_train_batch_end` is not compatible with " "taking a `dataloader_iter` argument in your `training_step`." ) if model.truncated_bptt_steps > 0: raise MisconfigurationException( "The model taking a `dataloader_iter` argument in your `training_step` " "is incompatible with `truncated_bptt_steps > 0`." )