# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from distutils.version import LooseVersion import pytest import torch from tests.base import EvalModelTemplate from tests.base.datamodules import TrialMNISTDataModule from tests.base.models import ParityModuleRNN, BasicGAN @pytest.mark.parametrize("modelclass", [ EvalModelTemplate, ParityModuleRNN, BasicGAN, ]) def test_torchscript_input_output(modelclass): """ Test that scripted LightningModule forward works. """ model = modelclass() script = model.to_torchscript() assert isinstance(script, torch.jit.ScriptModule) model.eval() model_output = model(model.example_input_array) script_output = script(model.example_input_array) assert torch.allclose(script_output, model_output) @pytest.mark.parametrize("modelclass", [ EvalModelTemplate, ParityModuleRNN, BasicGAN, ]) def test_torchscript_input_output_trace(modelclass): """ Test that traced LightningModule forward works. """ model = modelclass() script = model.to_torchscript(method='trace') assert isinstance(script, torch.jit.ScriptModule) model.eval() model_output = model(model.example_input_array) script_output = script(model.example_input_array) assert torch.allclose(script_output, model_output) @pytest.mark.parametrize("device", [ torch.device("cpu"), torch.device("cuda", 0) ]) @pytest.mark.skipif(not torch.cuda.is_available(), reason="requires GPU machine") def test_torchscript_device(device): """ Test that scripted module is on the correct device. """ model = EvalModelTemplate().to(device) script = model.to_torchscript() assert next(script.parameters()).device == device script_output = script(model.example_input_array.to(device)) assert script_output.device == device def test_torchscript_retain_training_state(): """ Test that torchscript export does not alter the training mode of original model. """ model = EvalModelTemplate() model.train(True) script = model.to_torchscript() assert model.training assert not script.training model.train(False) _ = model.to_torchscript() assert not model.training assert not script.training @pytest.mark.parametrize("modelclass", [ EvalModelTemplate, ParityModuleRNN, BasicGAN, ]) def test_torchscript_properties(modelclass): """ Test that scripted LightningModule has unnecessary methods removed. """ model = modelclass() model.datamodule = TrialMNISTDataModule() script = model.to_torchscript() assert not hasattr(script, "datamodule") assert not hasattr(model, "batch_size") or hasattr(script, "batch_size") assert not hasattr(model, "learning_rate") or hasattr(script, "learning_rate") if LooseVersion(torch.__version__) >= LooseVersion("1.4.0"): # only on torch >= 1.4 do these unused methods get removed assert not callable(getattr(script, "training_step", None)) @pytest.mark.parametrize("modelclass", [ EvalModelTemplate, ParityModuleRNN, BasicGAN, ]) @pytest.mark.skipif( LooseVersion(torch.__version__) < LooseVersion("1.5.0"), reason="torch.save/load has bug loading script modules on torch <= 1.4", ) def test_torchscript_save_load(tmpdir, modelclass): """ Test that scripted LightningModules is correctly saved and can be loaded. """ model = modelclass() output_file = str(tmpdir / "model.pt") script = model.to_torchscript(file_path=output_file) loaded_script = torch.jit.load(output_file) assert torch.allclose(next(script.parameters()), next(loaded_script.parameters()))