# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import namedtuple from unittest.mock import patch import pytest import torch from torchtext.data import Batch, Dataset, Example, Field, LabelField import tests.base.develop_pipelines as tpipes import tests.base.develop_utils as tutils from pytorch_lightning import Trainer from pytorch_lightning.callbacks import EarlyStopping from pytorch_lightning.core import memory from pytorch_lightning.utilities import device_parser from pytorch_lightning.utilities.exceptions import MisconfigurationException from tests.base import EvalModelTemplate from pytorch_lightning.accelerators.gpu_accelerator import GPUAccelerator PRETEND_N_OF_GPUS = 16 @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") def test_multi_gpu_none_backend(tmpdir): """Make sure when using multiple GPUs the user can't use `distributed_backend = None`.""" tutils.set_random_master_port() trainer_options = dict( default_root_dir=tmpdir, distributed_backend=None, progress_bar_refresh_rate=0, max_epochs=1, limit_train_batches=0.2, limit_val_batches=0.2, gpus=2 ) model = EvalModelTemplate() tpipes.run_model_test(trainer_options, model) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine") @pytest.mark.parametrize('gpus', [1, [0], [1]]) def test_single_gpu_model(tmpdir, gpus): """Make sure single GPU works (DP mode).""" trainer_options = dict( default_root_dir=tmpdir, progress_bar_refresh_rate=0, max_epochs=1, limit_train_batches=0.1, limit_val_batches=0.1, gpus=gpus ) model = EvalModelTemplate() tpipes.run_model_test(trainer_options, model) @pytest.fixture def mocked_device_count(monkeypatch): def device_count(): return PRETEND_N_OF_GPUS monkeypatch.setattr(torch.cuda, 'device_count', device_count) @pytest.fixture def mocked_device_count_0(monkeypatch): def device_count(): return 0 monkeypatch.setattr(torch.cuda, 'device_count', device_count) @pytest.mark.gpus_param_tests @pytest.mark.parametrize(["gpus", "expected_num_gpus", "distributed_backend"], [ pytest.param(None, 0, None, id="None - expect 0 gpu to use."), pytest.param(0, 0, None, id="Oth gpu, expect 1 gpu to use."), pytest.param(1, 1, None, id="1st gpu, expect 1 gpu to use."), pytest.param(-1, PRETEND_N_OF_GPUS, "ddp", id="-1 - use all gpus"), pytest.param('-1', PRETEND_N_OF_GPUS, "ddp", id="'-1' - use all gpus"), pytest.param(3, 3, "ddp", id="3rd gpu - 1 gpu to use (backend:ddp)") ]) def test_trainer_gpu_parse(mocked_device_count, gpus, expected_num_gpus, distributed_backend): assert Trainer(gpus=gpus, distributed_backend=distributed_backend).num_gpus == expected_num_gpus @pytest.mark.gpus_param_tests @pytest.mark.parametrize(["gpus", "expected_num_gpus", "distributed_backend"], [ pytest.param(None, 0, None, id="None - expect 0 gpu to use."), pytest.param(None, 0, "ddp", id="None - expect 0 gpu to use."), ]) def test_trainer_num_gpu_0(mocked_device_count_0, gpus, expected_num_gpus, distributed_backend): assert Trainer(gpus=gpus, distributed_backend=distributed_backend).num_gpus == expected_num_gpus @pytest.mark.gpus_param_tests @pytest.mark.parametrize(['gpus', 'expected_root_gpu', "distributed_backend"], [ pytest.param(None, None, "ddp", id="None is None"), pytest.param(0, None, "ddp", id="O gpus, expect gpu root device to be None."), pytest.param(1, 0, "ddp", id="1 gpu, expect gpu root device to be 0."), pytest.param(-1, 0, "ddp", id="-1 - use all gpus, expect gpu root device to be 0."), pytest.param('-1', 0, "ddp", id="'-1' - use all gpus, expect gpu root device to be 0."), pytest.param(3, 0, "ddp", id="3 gpus, expect gpu root device to be 0.(backend:ddp)") ]) def test_root_gpu_property(mocked_device_count, gpus, expected_root_gpu, distributed_backend): assert Trainer(gpus=gpus, distributed_backend=distributed_backend).root_gpu == expected_root_gpu @pytest.mark.gpus_param_tests @pytest.mark.parametrize(['gpus', 'expected_root_gpu', "distributed_backend"], [ pytest.param(None, None, None, id="None is None"), pytest.param(None, None, "ddp", id="None is None"), pytest.param(0, None, "ddp", id="None is None"), ]) def test_root_gpu_property_0_passing(mocked_device_count_0, gpus, expected_root_gpu, distributed_backend): assert Trainer(gpus=gpus, distributed_backend=distributed_backend).root_gpu == expected_root_gpu # Asking for a gpu when non are available will result in a MisconfigurationException @pytest.mark.gpus_param_tests @pytest.mark.parametrize(['gpus', 'expected_root_gpu', "distributed_backend"], [ pytest.param(1, None, "ddp"), pytest.param(3, None, "ddp"), pytest.param(3, None, "ddp"), pytest.param([1, 2], None, "ddp"), pytest.param([0, 1], None, "ddp"), pytest.param(-1, None, "ddp"), pytest.param('-1', None, "ddp") ]) def test_root_gpu_property_0_raising(mocked_device_count_0, gpus, expected_root_gpu, distributed_backend): with pytest.raises(MisconfigurationException): Trainer(gpus=gpus, distributed_backend=distributed_backend) @pytest.mark.gpus_param_tests @pytest.mark.parametrize(['gpus', 'expected_root_gpu'], [ pytest.param(None, None, id="No gpus, expect gpu root device to be None"), pytest.param([0], 0, id="Oth gpu, expect gpu root device to be 0."), pytest.param([1], 1, id="1st gpu, expect gpu root device to be 1."), pytest.param([3], 3, id="3rd gpu, expect gpu root device to be 3."), pytest.param([1, 2], 1, id="[1, 2] gpus, expect gpu root device to be 1."), ]) def test_determine_root_gpu_device(gpus, expected_root_gpu): assert device_parser.determine_root_gpu_device(gpus) == expected_root_gpu @pytest.mark.gpus_param_tests @pytest.mark.parametrize(['gpus', 'expected_gpu_ids'], [ pytest.param(None, None), pytest.param(0, None), pytest.param(1, [0]), pytest.param(3, [0, 1, 2]), pytest.param(-1, list(range(PRETEND_N_OF_GPUS)), id="-1 - use all gpus"), pytest.param([0], [0]), pytest.param([1, 3], [1, 3]), pytest.param('0', [0]), pytest.param('3', [3]), pytest.param('1, 3', [1, 3]), pytest.param('2,', [2]), pytest.param('-1', list(range(PRETEND_N_OF_GPUS)), id="'-1' - use all gpus"), ]) def test_parse_gpu_ids(mocked_device_count, gpus, expected_gpu_ids): assert device_parser.parse_gpu_ids(gpus) == expected_gpu_ids @pytest.mark.gpus_param_tests @pytest.mark.parametrize(['gpus'], [ pytest.param(0.1), pytest.param(-2), pytest.param(False), pytest.param([]), pytest.param([-1]), pytest.param([None]), pytest.param(['0']), pytest.param((0, 1)), ]) def test_parse_gpu_fail_on_unsupported_inputs(mocked_device_count, gpus): with pytest.raises(MisconfigurationException): device_parser.parse_gpu_ids(gpus) @pytest.mark.gpus_param_tests @pytest.mark.parametrize("gpus", [[1, 2, 19], -1, '-1']) def test_parse_gpu_fail_on_non_existent_id(mocked_device_count_0, gpus): with pytest.raises(MisconfigurationException): device_parser.parse_gpu_ids(gpus) @pytest.mark.gpus_param_tests def test_parse_gpu_fail_on_non_existent_id_2(mocked_device_count): with pytest.raises(MisconfigurationException): device_parser.parse_gpu_ids([1, 2, 19]) @pytest.mark.gpus_param_tests @pytest.mark.parametrize("gpus", [-1, '-1']) def test_parse_gpu_returns_none_when_no_devices_are_available(mocked_device_count_0, gpus): with pytest.raises(MisconfigurationException): device_parser.parse_gpu_ids(gpus) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine") def test_single_gpu_batch_parse(): trainer = Trainer(gpus=1) trainer.accelerator_backend = GPUAccelerator(trainer) # non-transferrable types primitive_objects = [None, {}, [], 1.0, "x", [None, 2], {"x": (1, 2), "y": None}] for batch in primitive_objects: data = trainer.accelerator_backend.batch_to_device(batch, torch.device('cuda:0')) assert data == batch # batch is just a tensor batch = torch.rand(2, 3) batch = trainer.accelerator_backend.batch_to_device(batch, torch.device('cuda:0')) assert batch.device.index == 0 and batch.type() == 'torch.cuda.FloatTensor' # tensor list batch = [torch.rand(2, 3), torch.rand(2, 3)] batch = trainer.accelerator_backend.batch_to_device(batch, torch.device('cuda:0')) assert batch[0].device.index == 0 and batch[0].type() == 'torch.cuda.FloatTensor' assert batch[1].device.index == 0 and batch[1].type() == 'torch.cuda.FloatTensor' # tensor list of lists batch = [[torch.rand(2, 3), torch.rand(2, 3)]] batch = trainer.accelerator_backend.batch_to_device(batch, torch.device('cuda:0')) assert batch[0][0].device.index == 0 and batch[0][0].type() == 'torch.cuda.FloatTensor' assert batch[0][1].device.index == 0 and batch[0][1].type() == 'torch.cuda.FloatTensor' # tensor dict batch = [{'a': torch.rand(2, 3), 'b': torch.rand(2, 3)}] batch = trainer.accelerator_backend.batch_to_device(batch, torch.device('cuda:0')) assert batch[0]['a'].device.index == 0 and batch[0]['a'].type() == 'torch.cuda.FloatTensor' assert batch[0]['b'].device.index == 0 and batch[0]['b'].type() == 'torch.cuda.FloatTensor' # tuple of tensor list and list of tensor dict batch = ([torch.rand(2, 3) for _ in range(2)], [{'a': torch.rand(2, 3), 'b': torch.rand(2, 3)} for _ in range(2)]) batch = trainer.accelerator_backend.batch_to_device(batch, torch.device('cuda:0')) assert batch[0][0].device.index == 0 and batch[0][0].type() == 'torch.cuda.FloatTensor' assert batch[1][0]['a'].device.index == 0 assert batch[1][0]['a'].type() == 'torch.cuda.FloatTensor' assert batch[1][0]['b'].device.index == 0 assert batch[1][0]['b'].type() == 'torch.cuda.FloatTensor' # namedtuple of tensor BatchType = namedtuple('BatchType', ['a', 'b']) batch = [BatchType(a=torch.rand(2, 3), b=torch.rand(2, 3)) for _ in range(2)] batch = trainer.accelerator_backend.batch_to_device(batch, torch.device('cuda:0')) assert batch[0].a.device.index == 0 assert batch[0].a.type() == 'torch.cuda.FloatTensor' # non-Tensor that has `.to()` defined class CustomBatchType: def __init__(self): self.a = torch.rand(2, 2) def to(self, *args, **kwargs): self.a = self.a.to(*args, **kwargs) return self batch = trainer.accelerator_backend.batch_to_device(CustomBatchType(), torch.device('cuda:0')) assert batch.a.type() == 'torch.cuda.FloatTensor' # torchtext.data.Batch samples = [ {'text': 'PyTorch Lightning is awesome!', 'label': 0}, {'text': 'Please make it work with torchtext', 'label': 1} ] text_field = Field() label_field = LabelField() fields = { 'text': ('text', text_field), 'label': ('label', label_field) } examples = [Example.fromdict(sample, fields) for sample in samples] dataset = Dataset( examples=examples, fields=fields.values() ) # Batch runs field.process() that numericalizes tokens, but it requires to build dictionary first text_field.build_vocab(dataset) label_field.build_vocab(dataset) batch = Batch(data=examples, dataset=dataset) batch = trainer.accelerator_backend.batch_to_device(batch, torch.device('cuda:0')) assert batch.text.type() == 'torch.cuda.LongTensor' assert batch.label.type() == 'torch.cuda.LongTensor' @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine") def test_non_blocking(): """ Tests that non_blocking=True only gets passed on torch.Tensor.to, but not on other objects. """ trainer = Trainer() trainer.accelerator_backend = GPUAccelerator(trainer) batch = torch.zeros(2, 3) with patch.object(batch, 'to', wraps=batch.to) as mocked: batch = trainer.accelerator_backend.batch_to_device(batch, torch.device('cuda:0')) mocked.assert_called_with(torch.device('cuda', 0), non_blocking=True) class BatchObject(object): def to(self, *args, **kwargs): pass batch = BatchObject() with patch.object(batch, 'to', wraps=batch.to) as mocked: batch = trainer.accelerator_backend.batch_to_device(batch, torch.device('cuda:0')) mocked.assert_called_with(torch.device('cuda', 0))