# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from pytorch_lightning import Trainer from tests.base.develop_utils import load_model_from_checkpoint, get_default_logger, \ reset_seed def run_model_test_without_loggers(trainer_options, model, min_acc: float = 0.50): reset_seed() # fit model trainer = Trainer(**trainer_options) result = trainer.fit(model) # correct result and ok accuracy assert result == 1, 'amp + ddp model failed to complete' pretrained_model = load_model_from_checkpoint( trainer.logger, trainer.checkpoint_callback.best_model_path, ) # test new model accuracy test_loaders = model.test_dataloader() if not isinstance(test_loaders, list): test_loaders = [test_loaders] for dataloader in test_loaders: run_prediction(dataloader, pretrained_model, min_acc=min_acc) if trainer.use_ddp: # on hpc this would work fine... but need to hack it for the purpose of the test trainer.model = pretrained_model trainer.optimizers, trainer.lr_schedulers = pretrained_model.configure_optimizers() def run_model_test(trainer_options, model, on_gpu: bool = True, version=None, with_hpc: bool = True): reset_seed() save_dir = trainer_options['default_root_dir'] # logger file to get meta logger = get_default_logger(save_dir, version=version) trainer_options.update(logger=logger) if 'checkpoint_callback' not in trainer_options: trainer_options.update(checkpoint_callback=True) trainer = Trainer(**trainer_options) initial_values = torch.tensor([torch.sum(torch.abs(x)) for x in model.parameters()]) result = trainer.fit(model) post_train_values = torch.tensor([torch.sum(torch.abs(x)) for x in model.parameters()]) assert result == 1, 'trainer failed' # Check that the model is actually changed post-training assert torch.norm(initial_values - post_train_values) > 0.1 # test model loading pretrained_model = load_model_from_checkpoint(logger, trainer.checkpoint_callback.best_model_path) # test new model accuracy test_loaders = model.test_dataloader() if not isinstance(test_loaders, list): test_loaders = [test_loaders] for dataloader in test_loaders: run_prediction(dataloader, pretrained_model) if with_hpc: if trainer.use_ddp or trainer.use_ddp2: # on hpc this would work fine... but need to hack it for the purpose of the test trainer.model = pretrained_model trainer.optimizers, trainer.lr_schedulers, trainer.optimizer_frequencies = \ trainer.init_optimizers(pretrained_model) # test HPC loading / saving trainer.checkpoint_connector.hpc_save(save_dir, logger) trainer.checkpoint_connector.hpc_load(save_dir, on_gpu=on_gpu) def run_prediction(dataloader, trained_model, dp=False, min_acc=0.50): # run prediction on 1 batch batch = next(iter(dataloader)) x, y = batch x = x.view(x.size(0), -1) if dp: with torch.no_grad(): output = trained_model(batch, 0) acc = output['val_acc'] acc = torch.mean(acc).item() else: with torch.no_grad(): y_hat = trained_model(x) y_hat = y_hat.cpu() # acc labels_hat = torch.argmax(y_hat, dim=1) y = y.cpu() acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) acc = torch.tensor(acc) acc = acc.item() assert acc >= min_acc, f"This model is expected to get > {min_acc} in test set (it got {acc})"