# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch from torch.utils.data import Dataset import pytorch_lightning as pl PATH_LEGACY = os.path.dirname(__file__) class RandomDataset(Dataset): def __init__(self, size, length: int = 100): self.len = length self.data = torch.randn(length, size) def __getitem__(self, index): return self.data[index] def __len__(self): return self.len class DummyModel(pl.LightningModule): def __init__(self): super().__init__() self.layer = torch.nn.Linear(32, 2) def forward(self, x): return self.layer(x) def _loss(self, batch, prediction): # An arbitrary loss to have a loss that updates the model weights during `Trainer.fit` calls return torch.nn.functional.mse_loss(prediction, torch.ones_like(prediction)) def _step(self, batch, batch_idx): output = self.layer(batch) loss = self._loss(batch, output) # return {'loss': loss} # used for PL<1.0 return loss # used for PL >= 1.0 def training_step(self, batch, batch_idx): return self._step(batch, batch_idx) def validation_step(self, batch, batch_idx): self._step(batch, batch_idx) def test_step(self, batch, batch_idx): self._step(batch, batch_idx) def configure_optimizers(self): optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1) lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1) return [optimizer], [lr_scheduler] def train_dataloader(self): return torch.utils.data.DataLoader(RandomDataset(32, 64)) def val_dataloader(self): return torch.utils.data.DataLoader(RandomDataset(32, 64)) def test_dataloader(self): return torch.utils.data.DataLoader(RandomDataset(32, 64)) def main_train(dir_path, max_epochs: int = 5): trainer = pl.Trainer( default_root_dir=dir_path, checkpoint_callback=True, max_epochs=max_epochs, ) model = DummyModel() trainer.fit(model) if __name__ == '__main__': path_dir = os.path.join(PATH_LEGACY, 'checkpoints', str(pl.__version__)) main_train(path_dir)