# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys from typing import Optional import pytest import torch from packaging.version import Version from pkg_resources import get_distribution from pytorch_lightning.callbacks.progress.rich_progress import _RICH_AVAILABLE from pytorch_lightning.overrides.fairscale import _FAIRSCALE_AVAILABLE, _FAIRSCALE_FULLY_SHARDED_AVAILABLE from pytorch_lightning.strategies.bagua import _BAGUA_AVAILABLE from pytorch_lightning.utilities import ( _APEX_AVAILABLE, _DEEPSPEED_AVAILABLE, _HOROVOD_AVAILABLE, _HPU_AVAILABLE, _IPU_AVAILABLE, _OMEGACONF_AVAILABLE, _TORCH_GREATER_EQUAL_1_10, _TORCH_QUANTIZE_AVAILABLE, _TPU_AVAILABLE, ) _HOROVOD_NCCL_AVAILABLE = False if _HOROVOD_AVAILABLE: import horovod try: # `nccl_built` returns an integer _HOROVOD_NCCL_AVAILABLE = bool(horovod.torch.nccl_built()) except AttributeError: # AttributeError can be raised if MPI is not available: # https://github.com/horovod/horovod/blob/v0.23.0/horovod/torch/__init__.py#L33-L34 pass class RunIf: """RunIf wrapper for simple marking specific cases, fully compatible with pytest.mark:: @RunIf(min_torch="0.0") @pytest.mark.parametrize("arg1", [1, 2.0]) def test_wrapper(arg1): assert arg1 > 0.0 """ def __new__( self, *args, min_gpus: int = 0, min_torch: Optional[str] = None, max_torch: Optional[str] = None, min_python: Optional[str] = None, quantization: bool = False, amp_apex: bool = False, bf16_cuda: bool = False, tpu: bool = False, ipu: bool = False, hpu: bool = False, horovod: bool = False, horovod_nccl: bool = False, skip_windows: bool = False, standalone: bool = False, fairscale: bool = False, fairscale_fully_sharded: bool = False, deepspeed: bool = False, rich: bool = False, skip_hanging_spawn: bool = False, omegaconf: bool = False, slow: bool = False, bagua: bool = False, **kwargs, ): """ Args: *args: Any :class:`pytest.mark.skipif` arguments. min_gpus: Require this number of gpus. min_torch: Require that PyTorch is greater or equal than this version. max_torch: Require that PyTorch is less than this version. min_python: Require that Python is greater or equal than this version. quantization: Require that `torch.quantization` is available. amp_apex: Require that NVIDIA/apex is installed. bf16_cuda: Require that CUDA device supports bf16. tpu: Require that TPU is available. ipu: Require that IPU is available. hpu: Require that HPU is available. horovod: Require that Horovod is installed. horovod_nccl: Require that Horovod is installed with NCCL support. skip_windows: Skip for Windows platform. standalone: Mark the test as standalone, our CI will run it in a separate process. fairscale: Require that facebookresearch/fairscale is installed. fairscale_fully_sharded: Require that `fairscale` fully sharded support is available. deepspeed: Require that microsoft/DeepSpeed is installed. rich: Require that willmcgugan/rich is installed. skip_hanging_spawn: Skip the test as it's impacted by hanging loggers on spawn. omegaconf: Require that omry/omegaconf is installed. slow: Mark the test as slow, our CI will run it in a separate job. bagua: Require that BaguaSys/bagua is installed. **kwargs: Any :class:`pytest.mark.skipif` keyword arguments. """ conditions = [] reasons = [] if min_gpus: conditions.append(torch.cuda.device_count() < min_gpus) reasons.append(f"GPUs>={min_gpus}") if min_torch: torch_version = get_distribution("torch").version conditions.append(Version(torch_version) < Version(min_torch)) reasons.append(f"torch>={min_torch}") if max_torch: torch_version = get_distribution("torch").version conditions.append(Version(torch_version) >= Version(max_torch)) reasons.append(f"torch<{max_torch}") if min_python: py_version = f"{sys.version_info.major}.{sys.version_info.minor}.{sys.version_info.micro}" conditions.append(Version(py_version) < Version(min_python)) reasons.append(f"python>={min_python}") if quantization: _miss_default = "fbgemm" not in torch.backends.quantized.supported_engines conditions.append(not _TORCH_QUANTIZE_AVAILABLE or _miss_default) reasons.append("PyTorch quantization") if amp_apex: conditions.append(not _APEX_AVAILABLE) reasons.append("NVIDIA Apex") if bf16_cuda: try: cond = not (torch.cuda.is_available() and _TORCH_GREATER_EQUAL_1_10 and torch.cuda.is_bf16_supported()) except (AssertionError, RuntimeError) as e: # AssertionError: Torch not compiled with CUDA enabled # RuntimeError: Found no NVIDIA driver on your system. is_unrelated = "Found no NVIDIA driver" not in str(e) or "Torch not compiled with CUDA" not in str(e) if is_unrelated: raise e cond = True conditions.append(cond) reasons.append("CUDA device bf16") if skip_windows: conditions.append(sys.platform == "win32") reasons.append("unimplemented on Windows") if tpu: conditions.append(not _TPU_AVAILABLE) reasons.append("TPU") if ipu: env_flag = os.getenv("PL_RUN_IPU_TESTS", "0") conditions.append(env_flag != "1" or not _IPU_AVAILABLE) reasons.append("IPU") kwargs["ipu"] = True if hpu: conditions.append(not _HPU_AVAILABLE) reasons.append("HPU") if horovod: conditions.append(not _HOROVOD_AVAILABLE) reasons.append("Horovod") if horovod_nccl: conditions.append(not _HOROVOD_NCCL_AVAILABLE) reasons.append("Horovod with NCCL") if standalone: env_flag = os.getenv("PL_RUN_STANDALONE_TESTS", "0") conditions.append(env_flag != "1") reasons.append("Standalone execution") # used in tests/conftest.py::pytest_collection_modifyitems kwargs["standalone"] = True if fairscale: conditions.append(not _FAIRSCALE_AVAILABLE) reasons.append("Fairscale") if fairscale_fully_sharded: conditions.append(not _FAIRSCALE_FULLY_SHARDED_AVAILABLE) reasons.append("Fairscale Fully Sharded") if deepspeed: conditions.append(not _DEEPSPEED_AVAILABLE) reasons.append("Deepspeed") if rich: conditions.append(not _RICH_AVAILABLE) reasons.append("Rich") if skip_hanging_spawn: # strategy=ddp_spawn, accelerator=cpu, python>=3.8, torch<1.9 does not work py_version = f"{sys.version_info.major}.{sys.version_info.minor}.{sys.version_info.micro}" ge_3_8 = Version(py_version) >= Version("3.8") torch_version = get_distribution("torch").version old_torch = Version(torch_version) < Version("1.9") conditions.append(ge_3_8 and old_torch) reasons.append("Impacted by hanging DDP spawn") if omegaconf: conditions.append(not _OMEGACONF_AVAILABLE) reasons.append("omegaconf") if slow: env_flag = os.getenv("PL_RUN_SLOW_TESTS", "0") conditions.append(env_flag != "1") reasons.append("Slow test") # used in tests/conftest.py::pytest_collection_modifyitems kwargs["slow"] = True if bagua: conditions.append(not _BAGUA_AVAILABLE or sys.platform in ("win32", "darwin")) reasons.append("Bagua") reasons = [rs for cond, rs in zip(conditions, reasons) if cond] return pytest.mark.skipif( *args, condition=any(conditions), reason=f"Requires: [{' + '.join(reasons)}]", **kwargs ) @RunIf(min_torch="99") def test_always_skip(): exit(1) @pytest.mark.parametrize("arg1", [0.5, 1.0, 2.0]) @RunIf(min_torch="0.0") def test_wrapper(arg1: float): assert arg1 > 0.0