# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC from typing import Any, Dict, List, Optional, Tuple import torch from torch import optim from torch.optim.optimizer import Optimizer from pytorch_lightning.core.lightning import LightningModule from pytorch_lightning.core.optimizer import LightningOptimizer from pytorch_lightning.utilities import rank_zero_warn from pytorch_lightning.utilities.exceptions import MisconfigurationException class TrainerOptimizersMixin(ABC): _lightning_optimizers: Optional[List[LightningOptimizer]] def init_optimizers(self, model: LightningModule) -> Tuple[List, List, List]: self._lightning_optimizers = None optim_conf = model.configure_optimizers() if optim_conf is None: rank_zero_warn( '`LightningModule.configure_optimizers` returned `None`, this fit will run with no optimizer', UserWarning, ) optim_conf = _MockOptimizer() optimizers, lr_schedulers, optimizer_frequencies = [], [], [] monitor = None # single output, single optimizer if isinstance(optim_conf, Optimizer): optimizers = [optim_conf] # two lists, optimizer + lr schedulers elif isinstance(optim_conf, (list, tuple)) and len(optim_conf) == 2 and isinstance(optim_conf[0], list): opt, sch = optim_conf optimizers = opt lr_schedulers = sch if isinstance(sch, list) else [sch] # single dictionary elif isinstance(optim_conf, dict): optimizers = [optim_conf["optimizer"]] monitor = optim_conf.get('monitor', None) lr_schedulers = [optim_conf["lr_scheduler"]] if "lr_scheduler" in optim_conf else [] # multiple dictionaries elif isinstance(optim_conf, (list, tuple)) and all(isinstance(d, dict) for d in optim_conf): optimizers = [opt_dict["optimizer"] for opt_dict in optim_conf] lr_schedulers = [opt_dict["lr_scheduler"] for opt_dict in optim_conf if "lr_scheduler" in opt_dict] optimizer_frequencies = [ opt_dict["frequency"] for opt_dict in optim_conf if opt_dict.get("frequency", None) is not None ] # assert that if frequencies are present, they are given for all optimizers if optimizer_frequencies and len(optimizer_frequencies) != len(optimizers): raise ValueError("A frequency must be given to each optimizer.") # single list or tuple, multiple optimizer elif isinstance(optim_conf, (list, tuple)): optimizers = list(optim_conf) # unknown configuration else: raise MisconfigurationException( 'Unknown configuration for model optimizers.' ' Output from `model.configure_optimizers()` should either be:\n' ' * `torch.optim.Optimizer`\n' ' * [`torch.optim.Optimizer`]\n' ' * ([`torch.optim.Optimizer`], [`torch.optim.lr_scheduler`])\n' ' * {"optimizer": `torch.optim.Optimizer`, (optional) "lr_scheduler": `torch.optim.lr_scheduler`}\n' ' * A list of the previously described dict format, with an optional "frequency" key (int)' ) is_manual_optimization = not self.train_loop.automatic_optimization lr_schedulers = self.configure_schedulers(lr_schedulers, monitor, is_manual_optimization) _validate_scheduler_optimizer(optimizers, lr_schedulers) return optimizers, lr_schedulers, optimizer_frequencies def convert_to_lightning_optimizers(self): def _convert_to_lightning_optimizer(trainer, optimizer): if not isinstance(optimizer, LightningOptimizer): optimizer = LightningOptimizer(optimizer) optimizer._on_trainer_init(trainer) return optimizer self._lightning_optimizers = { opt_idx: _convert_to_lightning_optimizer(self, opt) for opt_idx, opt in enumerate(self.optimizers) } def configure_schedulers( self, schedulers: list, monitor: Optional[str], is_manual_optimization: bool, ) -> List[Dict[str, Any]]: """Convert each scheduler into dict structure with relevant information""" lr_schedulers = [] default_config = _get_default_scheduler_config() for scheduler in schedulers: if isinstance(scheduler, dict): # check provided keys extra_keys = [k for k in scheduler.keys() if k not in default_config.keys()] if extra_keys: rank_zero_warn(f'Found unsupported keys in the lr scheduler dict: {extra_keys}', RuntimeWarning) if 'scheduler' not in scheduler: raise MisconfigurationException( 'The lr scheduler dict must have the key "scheduler" with its item being an lr scheduler' ) if 'interval' in scheduler and scheduler['interval'] not in ('step', 'epoch'): raise MisconfigurationException( f'The "interval" key in lr scheduler dict must be "step" or "epoch"' f' but is "{scheduler["interval"]}"' ) if is_manual_optimization: invalid_keys = {'interval', 'frequency', 'reduce_on_plateau', 'monitor', 'strict'} keys_to_warn = [k for k in scheduler.keys() if k in invalid_keys] if keys_to_warn: rank_zero_warn( f'The lr scheduler dict contains the key(s) {keys_to_warn}, but the keys will be ignored.' ' You need to call `lr_scheduler.step()` manually in manual optimization.', RuntimeWarning, ) scheduler['reduce_on_plateau'] = isinstance( scheduler['scheduler'], optim.lr_scheduler.ReduceLROnPlateau ) if scheduler['reduce_on_plateau'] and scheduler.get('monitor', None) is None: raise MisconfigurationException( 'The lr scheduler dict must include a monitor when a `ReduceLROnPlateau` scheduler is used.' ' For example: {"optimizer": optimizer, "lr_scheduler":' ' {"scheduler": scheduler, "monitor": "your_loss"}}' ) lr_schedulers.append({**default_config, **scheduler}) elif isinstance(scheduler, optim.lr_scheduler.ReduceLROnPlateau): if monitor is None: raise MisconfigurationException( '`configure_optimizers` must include a monitor when a `ReduceLROnPlateau` scheduler is used.' ' For example:' ' {"optimizer": optimizer, "lr_scheduler": scheduler, "monitor": "metric_to_track"}' ) lr_schedulers.append({ **default_config, 'scheduler': scheduler, 'reduce_on_plateau': True, 'monitor': monitor }) elif isinstance(scheduler, optim.lr_scheduler._LRScheduler): lr_schedulers.append({**default_config, 'scheduler': scheduler}) else: raise ValueError(f'The provided lr scheduler "{scheduler}" is invalid') return lr_schedulers class _MockOptimizer(Optimizer): """The `_MockOptimizer` will be used inplace of an optimizer in the event that `None` is returned from `configure_optimizers`. """ def __init__(self): super().__init__([torch.zeros(1)], {}) def add_param_group(self, param_group): pass # Do Nothing def load_state_dict(self, state_dict): pass # Do Nothing def state_dict(self): return {} # Return Empty def step(self, closure=None): if closure is not None: closure() def zero_grad(self): pass # Do Nothing def __repr__(self): return 'No Optimizer' def _validate_scheduler_optimizer(optimizers, lr_schedulers): if any(sch['scheduler'].optimizer not in optimizers for sch in lr_schedulers): raise MisconfigurationException( "Some schedulers are attatched with an optimizer that wasn't returned from `configure_optimizers`." ) def _get_default_scheduler_config() -> Dict[str, Any]: return { 'scheduler': None, 'name': None, # no custom name 'interval': 'epoch', # after epoch is over 'frequency': 1, # every epoch/batch 'reduce_on_plateau': False, # most often not ReduceLROnPlateau scheduler 'monitor': None, # value to monitor for ReduceLROnPlateau 'strict': True, # enforce that the monitor exists for ReduceLROnPlateau }