from typing import Any import torch from torch import Tensor from torch.nn import Module from torch.optim.optimizer import Optimizer from pytorch_lightning.utilities import move_data_to_device, NATIVE_AMP_AVALAIBLE try: from apex import amp except ImportError: APEX_AVAILABLE = False else: APEX_AVAILABLE = True class ModelHooks(Module): def setup(self, stage: str): """ Called at the beginning of fit and test. This is a good hook when you need to build models dynamically or adjust something about them. This hook is called on every process when using DDP. Args: stage: either 'fit' or 'test' Example:: class LitModel(...): def __init__(self): self.l1 = None def prepare_data(self): download_data() tokenize() # don't do this self.something = else def setup(stage): data = Load_data(...) self.l1 = nn.Linear(28, data.num_classes) """ def teardown(self, stage: str): """ Called at the end of fit and test. Args: stage: either 'fit' or 'test' """ def on_fit_start(self): """ Called at the very beginning of fit. If on DDP it is called on every process """ def on_fit_end(self): """ Called at the very end of fit. If on DDP it is called on every process """ def on_train_start(self) -> None: """ Called at the beginning of training before sanity check. """ # do something at the start of training def on_train_end(self) -> None: """ Called at the end of training before logger experiment is closed. """ # do something at the end of training def on_batch_start(self, batch: Any) -> None: """ Called in the training loop before anything happens for that batch. If you return -1 here, you will skip training for the rest of the current epoch. Args: batch: The batched data as it is returned by the training DataLoader. """ # do something when the batch starts def on_batch_end(self) -> None: """ Called in the training loop after the batch. """ # do something when the batch ends def on_epoch_start(self) -> None: """ Called in the training loop at the very beginning of the epoch. """ # do something when the epoch starts def on_epoch_end(self) -> None: """ Called in the training loop at the very end of the epoch. """ # do something when the epoch ends def on_train_epoch_start(self) -> None: """ Called in the training loop at the very beginning of the epoch. """ # do something when the epoch starts def on_train_epoch_end(self) -> None: """ Called in the training loop at the very end of the epoch. """ # do something when the epoch ends def on_validation_epoch_start(self) -> None: """ Called in the validation loop at the very beginning of the epoch. """ # do something when the epoch starts def on_validation_epoch_end(self) -> None: """ Called in the validation loop at the very end of the epoch. """ # do something when the epoch ends def on_test_epoch_start(self) -> None: """ Called in the test loop at the very beginning of the epoch. """ # do something when the epoch starts def on_test_epoch_end(self) -> None: """ Called in the test loop at the very end of the epoch. """ # do something when the epoch ends def on_pre_performance_check(self) -> None: """ Called at the very beginning of the validation loop. """ # do something before validation starts def on_post_performance_check(self) -> None: """ Called at the very end of the validation loop. """ # do something before validation end def on_before_zero_grad(self, optimizer: Optimizer) -> None: """ Called after optimizer.step() and before optimizer.zero_grad(). Called in the training loop after taking an optimizer step and before zeroing grads. Good place to inspect weight information with weights updated. This is where it is called:: for optimizer in optimizers: optimizer.step() model.on_before_zero_grad(optimizer) # < ---- called here optimizer.zero_grad Args: optimizer: The optimizer for which grads should be zeroed. """ # do something with the optimizer or inspect it. def on_after_backward(self) -> None: """ Called in the training loop after loss.backward() and before optimizers do anything. This is the ideal place to inspect or log gradient information. Example:: def on_after_backward(self): # example to inspect gradient information in tensorboard if self.trainer.global_step % 25 == 0: # don't make the tf file huge params = self.state_dict() for k, v in params.items(): grads = v name = k self.logger.experiment.add_histogram(tag=name, values=grads, global_step=self.trainer.global_step) """ def backward(self, trainer, loss: Tensor, optimizer: Optimizer, optimizer_idx: int) -> None: """ Override backward with your own implementation if you need to. Args: trainer: Pointer to the trainer loss: Loss is already scaled by accumulated grads optimizer: Current optimizer being used optimizer_idx: Index of the current optimizer being used Called to perform backward step. Feel free to override as needed. The loss passed in has already been scaled for accumulated gradients if requested. Example:: def backward(self, trainer, loss, optimizer, optimizer_idx): loss.backward() """ loss.backward() def amp_scale_loss(self, unscaled_loss, optimizer, optimizer_idx): if NATIVE_AMP_AVALAIBLE: scaled_loss = self.trainer.scaler.scale(unscaled_loss) else: scaled_loss = amp.scale_loss(unscaled_loss, optimizer) return scaled_loss def transfer_batch_to_device(self, batch: Any, device: torch.device) -> Any: """ Override this hook if your :class:`~torch.utils.data.DataLoader` returns tensors wrapped in a custom data structure. The data types listed below (and any arbitrary nesting of them) are supported out of the box: - :class:`torch.Tensor` or anything that implements `.to(...)` - :class:`list` - :class:`dict` - :class:`tuple` - :class:`torchtext.data.batch.Batch` For anything else, you need to define how the data is moved to the target device (CPU, GPU, TPU, ...). Example:: def transfer_batch_to_device(self, batch, device) if isinstance(batch, CustomBatch): # move all tensors in your custom data structure to the device batch.samples = batch.samples.to(device) batch.targets = batch.targets.to(device) else: batch = super().transfer_batch_to_device(data, device) return batch Args: batch: A batch of data that needs to be transferred to a new device. device: The target device as defined in PyTorch. Returns: A reference to the data on the new device. Note: This hook should only transfer the data and not modify it, nor should it move the data to any other device than the one passed in as argument (unless you know what you are doing). The :class:`~pytorch_lightning.trainer.trainer.Trainer` already takes care of splitting the batch and determines the target devices. See Also: - :func:`~pytorch_lightning.utilities.apply_func.move_data_to_device` - :func:`~pytorch_lightning.utilities.apply_func.apply_to_collection` """ return move_data_to_device(batch, device)