:orphan:
.. _gpu_intermediate:
GPU training (Intermediate)
===========================
**Audience:** Users looking to train across machines or experiment with different scaling techniques.
----
Distributed Training strategies
-------------------------------
Lightning supports multiple ways of doing distributed training.
.. raw:: html
|
- DistributedDataParallel (multiple-gpus across many machines)
- Regular (``strategy='ddp'``)
- Spawn (``strategy='ddp_spawn'``)
- Notebook/Fork (``strategy='ddp_notebook'``)
.. note::
If you request multiple GPUs or nodes without setting a strategy, DDP will be automatically used.
For a deeper understanding of what Lightning is doing, feel free to read this
`guide `_.
Distributed Data Parallel
^^^^^^^^^^^^^^^^^^^^^^^^^
:class:`~torch.nn.parallel.DistributedDataParallel` (DDP) works as follows:
1. Each GPU across each node gets its own process.
2. Each GPU gets visibility into a subset of the overall dataset. It will only ever see that subset.
3. Each process inits the model.
4. Each process performs a full forward and backward pass in parallel.
5. The gradients are synced and averaged across all processes.
6. Each process updates its optimizer.
.. code-block:: python
# train on 8 GPUs (same machine (ie: node))
trainer = Trainer(accelerator="gpu", devices=8, strategy="ddp")
# train on 32 GPUs (4 nodes)
trainer = Trainer(accelerator="gpu", devices=8, strategy="ddp", num_nodes=4)
This Lightning implementation of DDP calls your script under the hood multiple times with the correct environment
variables:
.. code-block:: bash
# example for 3 GPUs DDP
MASTER_ADDR=localhost MASTER_PORT=random() WORLD_SIZE=3 NODE_RANK=0 LOCAL_RANK=0 python my_file.py --accelerator 'gpu' --devices 3 --etc
MASTER_ADDR=localhost MASTER_PORT=random() WORLD_SIZE=3 NODE_RANK=1 LOCAL_RANK=0 python my_file.py --accelerator 'gpu' --devices 3 --etc
MASTER_ADDR=localhost MASTER_PORT=random() WORLD_SIZE=3 NODE_RANK=2 LOCAL_RANK=0 python my_file.py --accelerator 'gpu' --devices 3 --etc
We use DDP this way because `ddp_spawn` has a few limitations (due to Python and PyTorch):
1. Since `.spawn()` trains the model in subprocesses, the model on the main process does not get updated.
2. Dataloader(num_workers=N), where N is large, bottlenecks training with DDP... ie: it will be VERY slow or won't work at all. This is a PyTorch limitation.
3. Forces everything to be picklable.
There are cases in which it is NOT possible to use DDP. Examples are:
- Jupyter Notebook, Google COLAB, Kaggle, etc.
- You have a nested script without a root package
In these situations you should use `ddp_notebook` or `dp` instead.
Distributed Data Parallel Spawn
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
`ddp_spawn` is exactly like `ddp` except that it uses .spawn to start the training processes.
.. warning:: It is STRONGLY recommended to use `DDP` for speed and performance.
.. code-block:: python
mp.spawn(self.ddp_train, nprocs=self.num_processes, args=(model,))
If your script does not support being called from the command line (ie: it is nested without a root
project module) you can use the following method:
.. code-block:: python
# train on 8 GPUs (same machine (ie: node))
trainer = Trainer(accelerator="gpu", devices=8, strategy="ddp_spawn")
We STRONGLY discourage this use because it has limitations (due to Python and PyTorch):
1. The model you pass in will not update. Please save a checkpoint and restore from there.
2. Set Dataloader(num_workers=0) or it will bottleneck training.
`ddp` is MUCH faster than `ddp_spawn`. We recommend you
1. Install a top-level module for your project using setup.py
.. code-block:: python
# setup.py
#!/usr/bin/env python
from setuptools import setup, find_packages
setup(
name="src",
version="0.0.1",
description="Describe Your Cool Project",
author="",
author_email="",
url="https://github.com/YourSeed", # REPLACE WITH YOUR OWN GITHUB PROJECT LINK
install_requires=["pytorch-lightning"],
packages=find_packages(),
)
2. Setup your project like so:
.. code-block:: bash
/project
/src
some_file.py
/or_a_folder
setup.py
3. Install as a root-level package
.. code-block:: bash
cd /project
pip install -e .
You can then call your scripts anywhere
.. code-block:: bash
cd /project/src
python some_file.py --accelerator 'gpu' --devices 8 --strategy 'ddp'
Distributed Data Parallel in Notebooks
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
DDP Notebook/Fork is an alternative to Spawn that can be used in interactive Python and Jupyter notebooks, Google Colab, Kaggle notebooks, and so on:
The Trainer enables it by default when such environments are detected.
.. code-block:: python
# train on 8 GPUs in a Jupyter notebook
trainer = Trainer(accelerator="gpu", devices=8)
# can be set explicitly
trainer = Trainer(accelerator="gpu", devices=8, strategy="ddp_notebook")
# can also be used in non-interactive environments
trainer = Trainer(accelerator="gpu", devices=8, strategy="ddp_fork")
Among the native distributed strategies, regular DDP (``strategy="ddp"``) is still recommended as the go-to strategy over Spawn and Fork/Notebook for its speed and stability but it can only be used with scripts.
Comparison of DDP variants and tradeoffs
****************************************
.. list-table:: DDP variants and their tradeoffs
:widths: 40 20 20 20
:header-rows: 1
* -
- DDP
- DDP Spawn
- DDP Notebook/Fork
* - Works in Jupyter notebooks / IPython environments
- No
- No
- Yes
* - Supports multi-node
- Yes
- Yes
- Yes
* - Supported platforms
- Linux, Mac, Win
- Linux, Mac, Win
- Linux, Mac
* - Requires all objects to be picklable
- No
- Yes
- No
* - Limitations in the main process
- None
- The state of objects is not up-to-date after returning to the main process (`Trainer.fit()` etc). Only the model parameters get transferred over.
- GPU operations such as moving tensors to the GPU or calling ``torch.cuda`` functions before invoking ``Trainer.fit`` is not allowed.
* - Process creation time
- Slow
- Slow
- Fast
Distributed and 16-bit precision
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Below are the possible configurations we support.
+-------+---------+-----+--------+-----------------------------------------------------------------------+
| 1 GPU | 1+ GPUs | DDP | 16-bit | command |
+=======+=========+=====+========+=======================================================================+
| Y | | | | `Trainer(accelerator="gpu", devices=1)` |
+-------+---------+-----+--------+-----------------------------------------------------------------------+
| Y | | | Y | `Trainer(accelerator="gpu", devices=1, precision=16)` |
+-------+---------+-----+--------+-----------------------------------------------------------------------+
| | Y | Y | | `Trainer(accelerator="gpu", devices=k, strategy='ddp')` |
+-------+---------+-----+--------+-----------------------------------------------------------------------+
| | Y | Y | Y | `Trainer(accelerator="gpu", devices=k, strategy='ddp', precision=16)` |
+-------+---------+-----+--------+-----------------------------------------------------------------------+
DDP can also be used with 1 GPU, but there's no reason to do so other than debugging distributed-related issues.
Implement Your Own Distributed (DDP) training
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If you need your own way to init PyTorch DDP you can override :meth:`pytorch_lightning.strategies.ddp.DDPStrategy.setup_distributed`.
If you also need to use your own DDP implementation, override :meth:`pytorch_lightning.strategies.ddp.DDPStrategy.configure_ddp`.
----------
Torch Distributed Elastic
-------------------------
Lightning supports the use of Torch Distributed Elastic to enable fault-tolerant and elastic distributed job scheduling. To use it, specify the 'ddp' backend and the number of GPUs you want to use in the trainer.
.. code-block:: python
Trainer(accelerator="gpu", devices=8, strategy="ddp")
To launch a fault-tolerant job, run the following on all nodes.
.. code-block:: bash
python -m torch.distributed.run
--nnodes=NUM_NODES
--nproc_per_node=TRAINERS_PER_NODE
--rdzv_id=JOB_ID
--rdzv_backend=c10d
--rdzv_endpoint=HOST_NODE_ADDR
YOUR_LIGHTNING_TRAINING_SCRIPT.py (--arg1 ... train script args...)
To launch an elastic job, run the following on at least ``MIN_SIZE`` nodes and at most ``MAX_SIZE`` nodes.
.. code-block:: bash
python -m torch.distributed.run
--nnodes=MIN_SIZE:MAX_SIZE
--nproc_per_node=TRAINERS_PER_NODE
--rdzv_id=JOB_ID
--rdzv_backend=c10d
--rdzv_endpoint=HOST_NODE_ADDR
YOUR_LIGHTNING_TRAINING_SCRIPT.py (--arg1 ... train script args...)
See the official `Torch Distributed Elastic documentation `_ for details
on installation and more use cases.
Optimize multi-machine communication
------------------------------------
By default, Lightning will select the ``nccl`` backend over ``gloo`` when running on GPUs.
Find more information about PyTorch's supported backends `here `__.
Lightning allows explicitly specifying the backend via the `process_group_backend` constructor argument on the relevant Strategy classes. By default, Lightning will select the appropriate process group backend based on the hardware used.
.. code-block:: python
from pytorch_lightning.strategies import DDPStrategy
# Explicitly specify the process group backend if you choose to
ddp = DDPStrategy(process_group_backend="nccl")
# Configure the strategy on the Trainer
trainer = Trainer(strategy=ddp, accelerator="gpu", devices=8)