# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from pytorch_lightning.trainer import Trainer from tests.helpers import BoringModel @pytest.mark.parametrize('max_epochs', [1, 2, 3]) @pytest.mark.parametrize('denominator', [1, 3, 4]) def test_val_check_interval(tmpdir, max_epochs, denominator): class TestModel(BoringModel): def __init__(self): super().__init__() self.train_epoch_calls = 0 self.val_epoch_calls = 0 def on_train_epoch_start(self) -> None: self.train_epoch_calls += 1 def on_validation_epoch_start(self) -> None: if not self.trainer.sanity_checking: self.val_epoch_calls += 1 model = TestModel() trainer = Trainer( max_epochs=max_epochs, val_check_interval=1 / denominator, logger=False, ) trainer.fit(model) assert model.train_epoch_calls == max_epochs assert model.val_epoch_calls == max_epochs * denominator