# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from contextlib import contextmanager from typing import Any, Callable, Dict, Generator import torch from torch.optim import LBFGS, Optimizer import pytorch_lightning as pl from pytorch_lightning.plugins.precision.mixed import MixedPrecisionPlugin from pytorch_lightning.utilities import _NATIVE_AMP_AVAILABLE, AMPType from pytorch_lightning.utilities.exceptions import MisconfigurationException class NativeMixedPrecisionPlugin(MixedPrecisionPlugin): """ Plugin for native mixed precision training with :mod:`torch.cuda.amp`.""" def __init__(self) -> None: super().__init__() if not _NATIVE_AMP_AVAILABLE: raise MisconfigurationException( "You have asked for native AMP but your PyTorch version does not support it." " Consider upgrading with `pip install torch>=1.6`." ) self.backend = AMPType.NATIVE self.scaler = torch.cuda.amp.GradScaler() def pre_backward( self, model: 'pl.LightningModule', closure_loss: torch.Tensor, ) -> torch.Tensor: closure_loss = self.scaler.scale(closure_loss) return super().pre_backward(model, closure_loss) def pre_optimizer_step( self, model: 'pl.LightningModule', optimizer: Optimizer, optimizer_idx: int, lambda_closure: Callable, **kwargs: Any, ) -> bool: if isinstance(optimizer, LBFGS): raise MisconfigurationException( f"native PyTorch amp and lbfgs are not compatible (optimizer {optimizer_idx})." " To request, please file a Github issue in PyTorch and tag @mcarilli" ) result = True if model.automatic_optimization: result = lambda_closure() self.scaler.unscale_(optimizer) super().pre_optimizer_step(model, optimizer, optimizer_idx, lambda_closure, **kwargs) # lambda_closure returning None indicates that backward has been skipped if result is not None: self.scaler.step(optimizer) self.scaler.update() return False @contextmanager def train_step_context(self) -> Generator[None, None, None]: """Enable autocast context""" with torch.cuda.amp.autocast(): yield @contextmanager def val_step_context(self) -> Generator[None, None, None]: """Enable autocast context""" with torch.cuda.amp.autocast(): yield @contextmanager def test_step_context(self) -> Generator[None, None, None]: """Enable autocast context""" with torch.cuda.amp.autocast(): yield @contextmanager def predict_step_context(self) -> Generator[None, None, None]: """Enable autocast context""" with torch.cuda.amp.autocast(): yield def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None: if "native_amp_scaling_state" in checkpoint: self.scaler.load_state_dict(checkpoint["native_amp_scaling_state"]) def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None: checkpoint["native_amp_scaling_state"] = self.scaler.state_dict()