# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os from pytorch_lightning.plugins.environments.cluster_environment import ClusterEnvironment log = logging.getLogger(__name__) class KubeflowEnvironment(ClusterEnvironment): """ Environment for distributed training using the `PyTorchJob `_ operator from `Kubeflow `_ """ @staticmethod def is_using_kubeflow() -> bool: """ Returns ``True`` if the current process was launched using Kubeflow PyTorchJob. """ required_env_vars = ("KUBERNETES_PORT", "MASTER_ADDR", "MASTER_PORT", "WORLD_SIZE", "RANK") # torchelastic sets these. Make sure we're not in torchelastic excluded_env_vars = ("GROUP_RANK", "LOCAL_RANK", "LOCAL_WORLD_SIZE") return (all(v in os.environ for v in required_env_vars) and not any(v in os.environ for v in excluded_env_vars)) def creates_children(self) -> bool: return True def master_address(self) -> str: return os.environ['MASTER_ADDR'] def master_port(self) -> int: return int(os.environ['MASTER_PORT']) def world_size(self) -> int: return int(os.environ['WORLD_SIZE']) def set_world_size(self, size: int) -> None: log.debug("KubeflowEnvironment.set_world_size was called, but setting world size is not allowed. Ignored.") def global_rank(self) -> int: return int(os.environ["RANK"]) def set_global_rank(self, rank: int) -> None: log.debug("KubeflowEnvironment.set_global_rank was called, but setting global rank is not allowed. Ignored.") def local_rank(self) -> int: return 0 def node_rank(self) -> int: return self.global_rank()