# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from torch import optim import tests.base.develop_utils as tutils from pytorch_lightning import Trainer from pytorch_lightning.callbacks import LearningRateMonitor from pytorch_lightning.trainer.states import TrainerState from pytorch_lightning.utilities.exceptions import MisconfigurationException from tests.base import BoringModel, EvalModelTemplate def test_lr_monitor_single_lr(tmpdir): """ Test that learning rates are extracted and logged for single lr scheduler. """ tutils.reset_seed() model = EvalModelTemplate() model.configure_optimizers = model.configure_optimizers__single_scheduler lr_monitor = LearningRateMonitor() trainer = Trainer( default_root_dir=tmpdir, max_epochs=2, limit_val_batches=0.1, limit_train_batches=0.5, callbacks=[lr_monitor], ) trainer.fit(model) assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}" assert lr_monitor.lrs, 'No learning rates logged' assert all(v is None for v in lr_monitor.last_momentum_values.values()), \ 'Momentum should not be logged by default' assert len(lr_monitor.lrs) == len(trainer.lr_schedulers), \ 'Number of learning rates logged does not match number of lr schedulers' assert lr_monitor.lr_sch_names == list(lr_monitor.lrs.keys()) == ['lr-Adam'], \ 'Names of learning rates not set correctly' @pytest.mark.parametrize('opt', ['SGD', 'Adam']) def test_lr_monitor_single_lr_with_momentum(tmpdir, opt): """ Test that learning rates and momentum are extracted and logged for single lr scheduler. """ class LogMomentumModel(BoringModel): def __init__(self, opt): super().__init__() self.opt = opt def configure_optimizers(self): if self.opt == 'SGD': opt_kwargs = {'momentum': 0.9} elif self.opt == 'Adam': opt_kwargs = {'betas': (0.9, 0.999)} optimizer = getattr(optim, self.opt)(self.parameters(), lr=1e-2, **opt_kwargs) lr_scheduler = optim.lr_scheduler.OneCycleLR(optimizer, max_lr=1e-2, total_steps=10_000) return [optimizer], [lr_scheduler] model = LogMomentumModel(opt=opt) lr_monitor = LearningRateMonitor(log_momentum=True) trainer = Trainer( default_root_dir=tmpdir, max_epochs=2, limit_val_batches=2, limit_train_batches=5, log_every_n_steps=1, callbacks=[lr_monitor], ) trainer.fit(model) assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}" assert all(v is not None for v in lr_monitor.last_momentum_values.values()), \ 'Expected momentum to be logged' assert len(lr_monitor.last_momentum_values) == len(trainer.lr_schedulers), \ 'Number of momentum values logged does not match number of lr schedulers' assert all(k == f'lr-{opt}-momentum' for k in lr_monitor.last_momentum_values.keys()), \ 'Names of momentum values not set correctly' def test_log_momentum_no_momentum_optimizer(tmpdir): """ Test that if optimizer doesn't have momentum then a warning is raised with log_momentum=True. """ class LogMomentumModel(BoringModel): def configure_optimizers(self): optimizer = optim.ASGD(self.parameters(), lr=1e-2) lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1) return [optimizer], [lr_scheduler] model = LogMomentumModel() lr_monitor = LearningRateMonitor(log_momentum=True) trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, limit_val_batches=2, limit_train_batches=5, log_every_n_steps=1, callbacks=[lr_monitor], ) with pytest.warns(RuntimeWarning, match="optimizers do not have momentum."): trainer.fit(model) assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}" assert all(v == 0 for v in lr_monitor.last_momentum_values.values()), \ 'Expected momentum to be logged' assert len(lr_monitor.last_momentum_values) == len(trainer.lr_schedulers), \ 'Number of momentum values logged does not match number of lr schedulers' assert all(k == 'lr-ASGD-momentum' for k in lr_monitor.last_momentum_values.keys()), \ 'Names of momentum values not set correctly' def test_lr_monitor_no_lr_scheduler(tmpdir): tutils.reset_seed() model = EvalModelTemplate() lr_monitor = LearningRateMonitor() trainer = Trainer( default_root_dir=tmpdir, max_epochs=2, limit_val_batches=0.1, limit_train_batches=0.5, callbacks=[lr_monitor], ) with pytest.warns(RuntimeWarning, match='have no learning rate schedulers'): trainer.fit(model) assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}" def test_lr_monitor_no_logger(tmpdir): tutils.reset_seed() model = EvalModelTemplate() lr_monitor = LearningRateMonitor() trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, callbacks=[lr_monitor], logger=False, ) with pytest.raises(MisconfigurationException, match='`Trainer` that has no logger'): trainer.fit(model) @pytest.mark.parametrize("logging_interval", ['step', 'epoch']) def test_lr_monitor_multi_lrs(tmpdir, logging_interval): """ Test that learning rates are extracted and logged for multi lr schedulers. """ tutils.reset_seed() model = EvalModelTemplate() model.configure_optimizers = model.configure_optimizers__multiple_schedulers lr_monitor = LearningRateMonitor(logging_interval=logging_interval) log_every_n_steps = 2 trainer = Trainer( default_root_dir=tmpdir, max_epochs=2, log_every_n_steps=log_every_n_steps, limit_train_batches=7, limit_val_batches=0.1, callbacks=[lr_monitor], ) trainer.fit(model) assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}" assert lr_monitor.lrs, 'No learning rates logged' assert len(lr_monitor.lrs) == len(trainer.lr_schedulers), \ 'Number of learning rates logged does not match number of lr schedulers' assert lr_monitor.lr_sch_names == ['lr-Adam', 'lr-Adam-1'], \ 'Names of learning rates not set correctly' if logging_interval == 'step': expected_number_logged = trainer.global_step // log_every_n_steps if logging_interval == 'epoch': expected_number_logged = trainer.max_epochs assert all(len(lr) == expected_number_logged for lr in lr_monitor.lrs.values()), \ 'Length of logged learning rates do not match the expected number' def test_lr_monitor_param_groups(tmpdir): """ Test that learning rates are extracted and logged for single lr scheduler. """ tutils.reset_seed() model = EvalModelTemplate() model.configure_optimizers = model.configure_optimizers__param_groups lr_monitor = LearningRateMonitor() trainer = Trainer( default_root_dir=tmpdir, max_epochs=2, limit_val_batches=0.1, limit_train_batches=0.5, callbacks=[lr_monitor], ) trainer.fit(model) assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}" assert lr_monitor.lrs, 'No learning rates logged' assert len(lr_monitor.lrs) == 2 * len(trainer.lr_schedulers), \ 'Number of learning rates logged does not match number of param groups' assert lr_monitor.lr_sch_names == ['lr-Adam'] assert list(lr_monitor.lrs.keys()) == ['lr-Adam/pg1', 'lr-Adam/pg2'], \ 'Names of learning rates not set correctly' def test_lr_monitor_custom_name(tmpdir): class TestModel(BoringModel): def configure_optimizers(self): optimizer, [scheduler] = super().configure_optimizers() lr_scheduler = {'scheduler': scheduler, 'name': 'my_logging_name'} return optimizer, [lr_scheduler] lr_monitor = LearningRateMonitor() trainer = Trainer( default_root_dir=tmpdir, max_epochs=2, limit_val_batches=0.1, limit_train_batches=0.5, callbacks=[lr_monitor], progress_bar_refresh_rate=0, weights_summary=None, ) trainer.fit(TestModel()) assert lr_monitor.lr_sch_names == list(lr_monitor.lrs.keys()) == ['my_logging_name']