# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest.mock import ANY, Mock import pytest import torch from torch.utils.data.dataloader import DataLoader from pytorch_lightning.core.mixins import DeviceDtypeModuleMixin from pytorch_lightning.lite import LightningLite from pytorch_lightning.lite.wrappers import _LiteDataLoader, _LiteModule, _LiteOptimizer from tests.helpers.runif import RunIf class EmptyLite(LightningLite): def run(self): pass def test_lite_module_wraps(): """Test that the wrapped module is accessible via the property.""" module = Mock() assert _LiteModule(module, Mock()).module is module @RunIf(min_gpus=1) @pytest.mark.parametrize( "precision, input_type, expected_type", [ (32, torch.float16, torch.float32), (32, torch.float32, torch.float32), (32, torch.float64, torch.float32), (32, torch.int, torch.int), (16, torch.float32, torch.float16), (16, torch.float64, torch.float16), (16, torch.long, torch.long), pytest.param("bf16", torch.float32, torch.bfloat16, marks=RunIf(min_torch="1.10", bf16_cuda=True)), pytest.param("bf16", torch.float64, torch.bfloat16, marks=RunIf(min_torch="1.10", bf16_cuda=True)), pytest.param("bf16", torch.bool, torch.bool, marks=RunIf(min_torch="1.10", bf16_cuda=True)), ], ) def test_lite_module_forward_conversion(precision, input_type, expected_type): """Test that the LiteModule performs autocasting on the input tensors and during forward().""" lite = EmptyLite(precision=precision, accelerator="gpu", devices=1) device = torch.device("cuda", 0) def check_autocast(forward_input): assert precision != 16 or torch.is_autocast_enabled() return forward_input module = Mock(wraps=torch.nn.Identity(), side_effect=check_autocast) lite_module = _LiteModule(module, lite._precision_plugin).to(device) out = lite_module(torch.tensor([1, 2, 3], dtype=input_type, device=device)) assert module.call_args[0][0].dtype == expected_type assert out.dtype == input_type or out.dtype == torch.get_default_dtype() @pytest.mark.parametrize( "device", [torch.device("cpu"), pytest.param(torch.device("cuda", 0), marks=RunIf(min_gpus=1))] ) @pytest.mark.parametrize("dtype", [torch.float32, torch.float16]) def test_lite_module_device_dtype_propagation(device, dtype): """Test that the LiteModule propagates device and dtype properties to its submodules (e.g. torchmetrics).""" class DeviceModule(DeviceDtypeModuleMixin): pass device_module = DeviceModule() lite_module = _LiteModule(device_module, Mock()) lite_module.to(device) assert device_module.device == device assert lite_module.device == device lite_module.to(dtype) assert device_module.dtype == dtype assert lite_module.dtype == dtype def test_lite_dataloader_iterator(): """Test that the iteration over a LiteDataLoader wraps the iterator of the underlying dataloader (no automatic device placement).""" dataloader = DataLoader(range(5), batch_size=2) lite_dataloader = _LiteDataLoader(dataloader) assert len(lite_dataloader) == len(dataloader) == 3 iterator = iter(dataloader) lite_iterator = iter(lite_dataloader) assert torch.equal(next(iterator), next(lite_iterator)) assert torch.equal(next(iterator), next(lite_iterator)) assert torch.equal(next(iterator), next(lite_iterator)) with pytest.raises(StopIteration): next(iterator) with pytest.raises(StopIteration): next(lite_iterator) @pytest.mark.parametrize( "src_device, dest_device", [ (torch.device("cpu"), torch.device("cpu")), pytest.param(torch.device("cpu"), torch.device("cuda", 0), marks=RunIf(min_gpus=1)), pytest.param(torch.device("cuda", 0), torch.device("cpu"), marks=RunIf(min_gpus=1)), ], ) def test_lite_dataloader_device_placement(src_device, dest_device): """Test that the LiteDataLoader moves data to the device in its iterator.""" sample0 = torch.tensor(0, device=src_device) sample1 = torch.tensor(1, device=src_device) sample2 = {"data": torch.tensor(2, device=src_device)} sample3 = {"data": torch.tensor(3, device=src_device)} dataloader = DataLoader([sample0, sample1, sample2, sample3], batch_size=2) lite_dataloader = _LiteDataLoader(dataloader=dataloader, device=dest_device) iterator = iter(lite_dataloader) batch0 = next(iterator) assert torch.equal(batch0, torch.tensor([0, 1], device=dest_device)) batch1 = next(iterator) assert torch.equal(batch1["data"], torch.tensor([2, 3], device=dest_device)) def test_lite_optimizer_wraps(): """Test that the LiteOptimizer fully wraps the optimizer.""" optimizer_cls = torch.optim.SGD optimizer = Mock(spec=optimizer_cls) lite_optimizer = _LiteOptimizer(optimizer, Mock()) assert lite_optimizer.optimizer is optimizer assert isinstance(lite_optimizer, optimizer_cls) def test_lite_optimizer_state_dict(): """Test that the LiteOptimizer calls into the strategy to collect the state.""" optimizer = Mock() strategy = Mock() lite_optimizer = _LiteOptimizer(optimizer=optimizer, strategy=strategy) lite_optimizer.state_dict() strategy.optimizer_state.assert_called_with(optimizer) def test_lite_optimizer_steps(): """Test that the LiteOptimizer forwards the step() and zero_grad() calls to the wrapped optimizer.""" optimizer = Mock() strategy = Mock() strategy.optimizer_step.return_value = 123 lite_optimizer = _LiteOptimizer(optimizer=optimizer, strategy=strategy) step_output = lite_optimizer.step() assert step_output == 123 strategy.optimizer_step.assert_called_once() strategy.optimizer_step.assert_called_with(optimizer, opt_idx=0, closure=ANY, model=strategy.model)