# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pytorch_lightning import Callback, Trainer from tests.helpers import BoringModel from tests.helpers.runif import RunIf class BatchHookObserverCallback(Callback): def on_train_batch_start(self, trainer, pl_module, batch, *args): assert batch.device == pl_module.device def on_train_batch_end(self, trainer, pl_module, outputs, batch, *args): assert batch.device == pl_module.device def on_validation_batch_start(self, trainer, pl_module, batch, *args): assert batch.device == pl_module.device def on_validation_batch_end(self, trainer, pl_module, outputs, batch, *args): assert batch.device == pl_module.device def on_test_batch_start(self, trainer, pl_module, batch, *args): assert batch.device == pl_module.device def on_test_batch_end(self, trainer, pl_module, outputs, batch, *args): assert batch.device == pl_module.device def on_predict_batch_start(self, trainer, pl_module, batch, *args): assert batch.device == pl_module.device def on_predict_batch_end(self, trainer, pl_module, outputs, batch, *args): assert batch.device == pl_module.device class BatchHookObserverModel(BoringModel): def on_train_batch_start(self, batch, *args): assert batch.device == self.device def on_train_batch_end(self, outputs, batch, *args): assert batch.device == self.device def on_validation_batch_start(self, batch, *args): assert batch.device == self.device def on_validation_batch_end(self, outputs, batch, *args): assert batch.device == self.device def on_test_batch_start(self, batch, *args): assert batch.device == self.device def on_test_batch_end(self, outputs, batch, *args): assert batch.device == self.device def on_predict_batch_start(self, batch, *args): assert batch.device == self.device def on_predict_batch_end(self, outputs, batch, *args): assert batch.device == self.device @RunIf(min_gpus=1) def test_callback_batch_on_device(tmpdir): """Test that the batch object sent to the on_*_batch_start/end hooks is on the right device.""" batch_callback = BatchHookObserverCallback() model = BatchHookObserverModel() trainer = Trainer( default_root_dir=tmpdir, max_steps=1, limit_train_batches=1, limit_val_batches=1, limit_test_batches=1, limit_predict_batches=1, accelerator="gpu", devices=1, callbacks=[batch_callback], ) trainer.fit(model) trainer.validate(model) trainer.test(model) trainer.predict(model)