# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser import torch from torch.nn import functional as F from torch.utils.data import DataLoader, random_split import pytorch_lightning as pl from pl_examples import _DATASETS_PATH, _TORCHVISION_AVAILABLE, cli_lightning_logo if _TORCHVISION_AVAILABLE: from torchvision import transforms from torchvision.datasets.mnist import MNIST else: from tests.helpers.datasets import MNIST class Backbone(torch.nn.Module): """ >>> Backbone() # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE Backbone( (l1): Linear(...) (l2): Linear(...) ) """ def __init__(self, hidden_dim=128): super().__init__() self.l1 = torch.nn.Linear(28 * 28, hidden_dim) self.l2 = torch.nn.Linear(hidden_dim, 10) def forward(self, x): x = x.view(x.size(0), -1) x = torch.relu(self.l1(x)) x = torch.relu(self.l2(x)) return x class LitClassifier(pl.LightningModule): """ >>> LitClassifier(Backbone()) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE LitClassifier( (backbone): ... ) """ def __init__(self, backbone, learning_rate=1e-3): super().__init__() self.save_hyperparameters() self.backbone = backbone def forward(self, x): # use forward for inference/predictions embedding = self.backbone(x) return embedding def training_step(self, batch, batch_idx): x, y = batch y_hat = self.backbone(x) loss = F.cross_entropy(y_hat, y) self.log('train_loss', loss, on_epoch=True) return loss def validation_step(self, batch, batch_idx): x, y = batch y_hat = self.backbone(x) loss = F.cross_entropy(y_hat, y) self.log('valid_loss', loss, on_step=True) def test_step(self, batch, batch_idx): x, y = batch y_hat = self.backbone(x) loss = F.cross_entropy(y_hat, y) self.log('test_loss', loss) def configure_optimizers(self): # self.hparams available because we called self.save_hyperparameters() return torch.optim.Adam(self.parameters(), lr=self.hparams.learning_rate) @staticmethod def add_model_specific_args(parent_parser): parser = ArgumentParser(parents=[parent_parser], add_help=False) parser.add_argument('--learning_rate', type=float, default=0.0001) return parser def cli_main(): pl.seed_everything(1234) # ------------ # args # ------------ parser = ArgumentParser() parser.add_argument('--batch_size', default=32, type=int) parser.add_argument('--hidden_dim', type=int, default=128) parser = pl.Trainer.add_argparse_args(parser) parser = LitClassifier.add_model_specific_args(parser) args = parser.parse_args() # ------------ # data # ------------ dataset = MNIST(_DATASETS_PATH, train=True, download=True, transform=transforms.ToTensor()) mnist_test = MNIST(_DATASETS_PATH, train=False, download=True, transform=transforms.ToTensor()) mnist_train, mnist_val = random_split(dataset, [55000, 5000]) train_loader = DataLoader(mnist_train, batch_size=args.batch_size) val_loader = DataLoader(mnist_val, batch_size=args.batch_size) test_loader = DataLoader(mnist_test, batch_size=args.batch_size) # ------------ # model # ------------ model = LitClassifier(Backbone(hidden_dim=args.hidden_dim), args.learning_rate) # ------------ # training # ------------ trainer = pl.Trainer.from_argparse_args(args) trainer.fit(model, train_loader, val_loader) # ------------ # testing # ------------ result = trainer.test(test_dataloaders=test_loader) print(result) if __name__ == '__main__': cli_lightning_logo() cli_main()