# Examples Our most robust examples showing all sorts of implementations can be found in our sister library [Lightning Bolts](https://pytorch-lightning.readthedocs.io/en/latest/ecosystem/bolts.html). ______________________________________________________________________ *Note that some examples may rely on new features that are only available in the development branch and may be incompatible with any releases.* *If you see any errors, you might want to consider switching to a version tag you would like to run examples with.* *For example, if you're using `pytorch-lightning==1.6.4` in your environment and seeing issues, run examples of the tag [1.6.4](https://github.com/Lightning-AI/lightning/tree/1.6.4/pl_examples).* ______________________________________________________________________ ## Lightning Fabric Examples We show how to accelerate your PyTorch code with [Lightning Fabric](https://pytorch-lightning.readthedocs.io/en/latest/fabric/fabric.html) with minimal code changes. You stay in full control of the training loop. - [MNIST: Vanilla PyTorch vs. Fabric](fabric/image_classifier/README.md) - [DCGAN: Vanilla PyTorch vs. Fabric](fabric/dcgan/README.md) ______________________________________________________________________ ## Lightning Trainer Examples In this folder, we have 2 simple examples that showcase the power of the Lightning Trainer. - [Image Classifier](pl_basics/backbone_image_classifier.py) (trains arbitrary datasets with arbitrary backbones). - [Autoencoder](pl_basics/autoencoder.py) ______________________________________________________________________ ## Domain Examples This folder contains older examples. You should instead use the examples in [Lightning Bolts](https://pytorch-lightning.readthedocs.io/en/latest/ecosystem/bolts.html) for advanced use cases. ______________________________________________________________________ ## Loop examples Contains implementations leveraging [loop customization](https://pytorch-lightning.readthedocs.io/en/latest/extensions/loops.html) to enhance the Trainer with new optimization routines. - [K-fold Cross Validation Loop](pl_loops/kfold.py): Implementation of cross validation in a loop and special datamodule. - [Yield Loop](pl_loops/yielding_training_step.py): Enables yielding from the training_step like in a Python generator. Useful for automatic optimization with multiple optimizers.