# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Generator, Union import torch from torch.optim import Optimizer from pytorch_lightning.core import LightningModule from pytorch_lightning.plugins.base_plugin import Plugin class PrecisionPlugin(Plugin): EPSILON = 1e-6 precision = 32 def master_params(self, optimizer: torch.optim.Optimizer) -> Generator[torch.Tensor, None, None]: """The master params of the model. Returns the plain model params here. Maybe different in other precision plugins. """ for group in optimizer.param_groups: for p in group["params"]: yield p def connect(self, model: torch.nn.Module, optimizers, lr_schedulers): """Connects this plugin to the accelerator and the training process""" return model, optimizers, lr_schedulers def backward( self, model: LightningModule, closure_loss: torch.Tensor, optimizer: torch.optim.Optimizer, opt_idx: int, should_accumulate: bool, *args, **kwargs, ): """performs the actual backpropagation Args: model: the model to be optimized closure_loss: the loss value obtained from the closure optimizer: the optimizer to perform the step lateron opt_idx: the optimizer's index should_accumulate: whether to accumulate gradients or not """ automatic_optimization = model.automatic_optimization # do backward pass if automatic_optimization: model.backward(closure_loss, optimizer, opt_idx) else: closure_loss.backward(*args, **kwargs) # once backward has been applied, release graph closure_loss = closure_loss.detach() return closure_loss def clip_gradients(self, optimizer: Optimizer, clip_val: Union[int, float], norm_type: float = float(2.0)): """Clips the gradients to a specific value""" # TODO: separate TPU case from here if clip_val is None: return grad_clip_val = float(clip_val) if grad_clip_val <= 0: return parameters = self.master_params(optimizer) max_norm = grad_clip_val if isinstance(parameters, torch.Tensor): parameters = [parameters] parameters = list(filter(lambda p: p.grad is not None, parameters)) device = parameters[0].device if norm_type == math.inf: total_norm = max(p.grad.data.abs().max() for p in parameters) else: out = torch.empty(len(parameters), device=device) for i, p in enumerate(parameters): torch.norm(p.grad.data.to(device), norm_type, out=out[i]) total_norm = torch.norm(out, norm_type) eps = self.EPSILON clip_coef = torch.tensor(max_norm, device=device) / (total_norm + eps) clip_coef = torch.min(clip_coef, torch.ones_like(clip_coef)) for p in parameters: p.grad.data.mul_(clip_coef.to(p.grad.data.device))