import os import pickle import tests.models.utils as tutils from pytorch_lightning import Trainer from pytorch_lightning.loggers import MLFlowLogger from tests.models import LightningTestModel def test_mlflow_logger(tmpdir): """Verify that basic functionality of mlflow logger works.""" tutils.reset_seed() hparams = tutils.get_hparams() model = LightningTestModel(hparams) mlflow_dir = os.path.join(tmpdir, 'mlruns') logger = MLFlowLogger('test', tracking_uri=f'file:{os.sep * 2}{mlflow_dir}') # Test already exists logger2 = MLFlowLogger('test', tracking_uri=f'file:{os.sep * 2}{mlflow_dir}') _ = logger2.run_id # Try logging string logger.log_metrics({'acc': 'test'}) trainer_options = dict( default_save_path=tmpdir, max_epochs=1, train_percent_check=0.05, logger=logger ) trainer = Trainer(**trainer_options) result = trainer.fit(model) assert result == 1, 'Training failed' def test_mlflow_pickle(tmpdir): """Verify that pickling trainer with mlflow logger works.""" tutils.reset_seed() mlflow_dir = os.path.join(tmpdir, 'mlruns') logger = MLFlowLogger('test', tracking_uri=f'file:{os.sep * 2}{mlflow_dir}') trainer_options = dict( default_save_path=tmpdir, max_epochs=1, logger=logger ) trainer = Trainer(**trainer_options) pkl_bytes = pickle.dumps(trainer) trainer2 = pickle.loads(pkl_bytes) trainer2.logger.log_metrics({'acc': 1.0})