from functools import partial import numpy as np import pytest import torch from sklearn.metrics import roc_curve as sk_roc_curve from pytorch_lightning.metrics.classification.roc import ROC from pytorch_lightning.metrics.functional.roc import roc from tests.metrics.classification.inputs import _input_binary_prob from tests.metrics.classification.inputs import _input_multiclass_prob as _input_mcls_prob from tests.metrics.classification.inputs import _input_multidim_multiclass_prob as _input_mdmc_prob from tests.metrics.utils import MetricTester, NUM_CLASSES torch.manual_seed(42) def _sk_roc_curve(y_true, probas_pred, num_classes=1): """ Adjusted comparison function that can also handles multiclass """ if num_classes == 1: return sk_roc_curve(y_true, probas_pred, drop_intermediate=False) fpr, tpr, thresholds = [], [], [] for i in range(num_classes): y_true_temp = np.zeros_like(y_true) y_true_temp[y_true == i] = 1 res = sk_roc_curve(y_true_temp, probas_pred[:, i], drop_intermediate=False) fpr.append(res[0]) tpr.append(res[1]) thresholds.append(res[2]) return fpr, tpr, thresholds def _sk_roc_binary_prob(preds, target, num_classes=1): sk_preds = preds.view(-1).numpy() sk_target = target.view(-1).numpy() return _sk_roc_curve(y_true=sk_target, probas_pred=sk_preds, num_classes=num_classes) def _sk_roc_multiclass_prob(preds, target, num_classes=1): sk_preds = preds.reshape(-1, num_classes).numpy() sk_target = target.view(-1).numpy() return _sk_roc_curve(y_true=sk_target, probas_pred=sk_preds, num_classes=num_classes) def _sk_roc_multidim_multiclass_prob(preds, target, num_classes=1): sk_preds = preds.transpose(0, 1).reshape(num_classes, -1).transpose(0, 1).numpy() sk_target = target.view(-1).numpy() return _sk_roc_curve(y_true=sk_target, probas_pred=sk_preds, num_classes=num_classes) @pytest.mark.parametrize( "preds, target, sk_metric, num_classes", [ (_input_binary_prob.preds, _input_binary_prob.target, _sk_roc_binary_prob, 1), (_input_mcls_prob.preds, _input_mcls_prob.target, _sk_roc_multiclass_prob, NUM_CLASSES), (_input_mdmc_prob.preds, _input_mdmc_prob.target, _sk_roc_multidim_multiclass_prob, NUM_CLASSES), ] ) class TestROC(MetricTester): @pytest.mark.parametrize("ddp", [True, False]) @pytest.mark.parametrize("dist_sync_on_step", [True, False]) def test_roc(self, preds, target, sk_metric, num_classes, ddp, dist_sync_on_step): self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=ROC, sk_metric=partial(sk_metric, num_classes=num_classes), dist_sync_on_step=dist_sync_on_step, metric_args={"num_classes": num_classes} ) def test_roc_functional(self, preds, target, sk_metric, num_classes): self.run_functional_metric_test( preds, target, metric_functional=roc, sk_metric=partial(sk_metric, num_classes=num_classes), metric_args={"num_classes": num_classes}, ) @pytest.mark.parametrize(['pred', 'target', 'expected_tpr', 'expected_fpr'], [ pytest.param([0, 1], [0, 1], [0, 1, 1], [0, 0, 1]), pytest.param([1, 0], [0, 1], [0, 0, 1], [0, 1, 1]), pytest.param([1, 1], [1, 0], [0, 1], [0, 1]), pytest.param([1, 0], [1, 0], [0, 1, 1], [0, 0, 1]), pytest.param([0.5, 0.5], [0, 1], [0, 1], [0, 1]), ]) def test_roc_curve(pred, target, expected_tpr, expected_fpr): fpr, tpr, thresh = roc(torch.tensor(pred), torch.tensor(target)) assert fpr.shape == tpr.shape assert fpr.size(0) == thresh.size(0) assert torch.allclose(fpr, torch.tensor(expected_fpr).to(fpr)) assert torch.allclose(tpr, torch.tensor(expected_tpr).to(tpr))